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Many mobile & web apps offer unique channels for serving highly personalized 
messages and product recommendations for authenticated customers

A recommender system can be used to 
determine the best message to serve each 

user

The type, location, and 
objective of each 

message can vary

Message 1

TRAVEL CARD …0987

$45678
CURRENT BALANCE

CHECKING ACCOUNT …0123

$9,01234
CURRENT BALANCE

Message 4

Message 2

Message 3Only one message can be 
shown in a set location at 

a given time
Best 

Message?

Data is for illustrative purposes only
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Summary of Presentation

● A multi-step, multi-objective Recommendation Engine personalizes messages shown to 
a visitor

○ Previous tree-based ensemble models did not take into account sequenced data on user 
interactions

● Today: Transformer-based Recommender Engine

○ Applies self-attention to learn most relevant interactions from visitor’s sequence

○ Utilizes NVIDIA Merlin’s NVTabular and Transformers4Rec packages to achieve:

- 35% gain in prediction quality in the experimentation data

- Robust scaling solutions for preprocessing and modeling on user data size of hundreds of 
millions
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Experiments with Transformer-powered recommendation systems show 35% 
improvement in model performance metric for all users

Performance of Transformers vs. Previous Model

Baseline Previous 
Model

Transformer Models

35% 
improvement
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Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work
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Relatively small catalogue sizes, low sparsity interactions, and multi-objective ranking 
require a recommender system that differs from those in typical e-commerce applications

Benchmark 
Dataset

# User # Item # Interaction Sparsity Interaction Type Time 
Stamp

User 
Context

Item 
Context

Interaction 
Context

Amazon*
(Books) 8,026,324 2,330,066 22,507,155 99.9999%

Rating 
[0-5] ☆

Y - Y -

Steam* 2,567,538 32,135 7,793,069 99.99% Buy Y - Y Y

Netflix*
(Prize data) 480,189 17,770 100,480,507 98.82%

Rating 
[1-5] ☆

Y - - -

Example 
Financial 
Institution

~ 100 MM ~ 1000 ~ 4 B ~ 70%*
Clicks / 
conversions / 
engagement

Y Y Y Y

* Open source sample datasets available at 
https://github.com/RUCAIBox/RecSysDatasets

Relatively smaller 
catalog size, but with 

multiple objectives

User-item interactions and 
data sparsity are 

fundamentally different 

Rich and accurate 
user context (KYC)

Events could be 
delayed by several 

days

… bringing us from next item prediction into the classification domain

https://github.com/RUCAIBox/RecSysDatasets
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Previous tree-based ensemble models took into account a user’s context, but did not 
leverage sequential user data

● Train model to predict conversion based on input configuration
● Score candidate messages based on trained parameters, pick highest scoring message to show next
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Binary 
Classifier

Probability of conversion 
if Jane sees Message 1     = 0.03

… etc.
         = 0.0

Probability of conversion 
if Jane sees Message 2    = 0.02

Date Customer Message 
Objective

Owns a 
credit 
card?

Convert

2/27/2024 Jane CD 1 0

3/2/2024 Jane Auto Finance 1 0

3/3/2024 Jane Savings 1 0

3/15/2024 Jane Travel Card 1 1 (Savings 
Account)

Session-Level Data Structure

Input Space Response

Data is for illustrative purposes only
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Sequence modeling utilizes historical sequence data and serves the right message to 
the right individual more often, stimulating performance lift

Advantages:
● Keeps track of the temporal order of a 

user’s visit history
● Learns how to credit their conversion to the 

appropriate prior experiences

Non-recent
impression

Saturday
impression

Tuesday
impression

Converts to 
Savings Account 

on Saturday

High RelevanceLow Relevance Low Relevance

Time

Data is for illustrative purposes only
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A Transformer-powered architecture can utilize self-attention to learn from user 
sequential behavior and provide more relevant predictions 

… … …...

Probability of 
ConversionBinary Classifier

t1 t2 tn
...

Transformer 
Encoder

...
T1 T2 Tn

E1 E2 En...
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A user’s journey can be translated into 
input features at various interaction 
times

Notable Differences:
● Transformer encoder architecture
● Train from scratch
● Binary classification instead of next-item 

prediction

Time

Features at Time Step 2
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Feature Processing
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This supervised training process differs from how Transformers are typically 
trained for NLP use cases

● Though Transformers typically have a pretraining component and masking module, 
this framework has neither

● Binary targets are explicitly passed in and modeled on directly
○ Transformer gets signal from divergence between true target and predicted label, 

rather than masked target and prediction over mask 

X 
(Customer 

Sequences)

y 
(Target)

Add & Norm

Feed Forward

Add & Norm

Multi Head 
Attention

Softmax

Linear

ŷ 
(Conversion 
Probabilities)

DIV(y, ŷ)

Encoder Binary 
Classification 

HeadNx
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Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work
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For data preprocessing in this framework, we use NVIDIA Merlin’s NVTabular to 
make use of GPU powered acceleration

● NVTabular is the ETL part of NVIDIA’s Merlin ecosystem that allows for end-to-end 
GPU-Accelerated and Distributed pipelines.

● It takes us from a tabular representation, like the one we currently model on, to a sequential one.

Date User Message Day of 
Week

Target

8/01/23 1 1 1 0

8/02/23 1 2 2 0

8/03/23 1 3 3 0

8/04/23 1 4 4 1

Event-Level Data Structure

Latest 
Date

User Message 
Sequence

DayOfWeek 
Sequence

Target

8/04/23 1 <1,2,3,4> <1,2,3,4> 1

Customer-Level Data Structure

Input Space

Input Space

Response

Response

NVTabular

● Feature Engineering
○ Filtering, imputing, binning, 

aggregating, slicing, padding etc
● Preprocessing

○ Continuous features - 
normalization, transformation

○ Categorical features: encode
○ Pre-shuffle and store to disk

● Data Loader
○ Load data at high throughput
○ Shuffle data on the fly
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Model Training: NVIDIA Merlin Transformers4Rec library provides GPU-accelerated 
Deep Learning framework tailored for Recommendation Systems

● Leverages SOTA NLP architectures from the Hugging Face Transformers library, 
allowing experimentation with many different Transformer architectures

● NVIDIA Merlin Transformers4Rec provides many out-of-the-box capabilities:
✓ Provides a classification framework that allows us to predict probabilities of conversion based 

on input features —  other packages only provide next-item prediction framework

✓ Integrates user feedback and contextual features, enabling any type of sequential tabular data

✓ Modular nature provides flexibility to design ML systems for unique needs

Conversion 
probabilities

0.7

0.6

0.9

…
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An end-to-end pipeline takes advantage of multi-GPU acceleration and modularity with 
state of the art open-source transformer models

Training and Evaluation Outputs

T4Rec Meta 
Architecture

Pytorch modelMerlin 
DataLoader

Trainer() to 
fit and 

evaluate

Trained 
Model

Predictions/ 
Embeddings

Metrics 
(TensorBoard)

Data in
sequential

format

Schema 
config

Inputs

NVTabular 
Preprocessing

 Tabular Data

Legend
Transformers4Rec

Merlin & NVTabular

HuggingFace Transformers

Model Parameters
(w/ Bayesian optimization)

Transformer Architecture

Optimizer Sequence 
Length

Data preprocessing scaled with PySpark distributed compute, 
and sequentialization via multi-GPU NVTabular

Model training and evaluation using Transformers4Rec scaled with multi-GPU 
DistributedDataParallel, with hyperparameter tuning via Optuna 

M
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g

…
Optuna
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Typical Evaluation Framework

Dataset Time Range Class Balance # Rows # Sequences

Training ~1 month 1:1 ~ 50 M ~ 2 M

Validation ~3 days Original ratio
(high imbalance) ~ 200 M ~ 3 M

Test ~3 days Original ratio
(high imbalance) ~ 200 M ~ 3 M

Experimental Methods:
● Transformer Architecture
● Additional Input Features
● Sequence Length
● Performance based on user visit frequency
● Hyperparameter Tuning
● Optimize for Binary Cross Entropy (Log Loss)

Data is for illustrative purposes only
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Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work
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Experimental results show considerable improvement of transformer model performance 
relative to the previous tree-based classifier, resulting in 35% lift in a key metric

Performance of Transformers vs. Previous Model

35% 
improvement

Baseline Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence
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The initial switch to a lightweight transformer encoder architecture offered 20% 
improvement over the previous tree-based model

Baseline Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence

20%
lift 

Performance of Transformers vs. Tree-based Model
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Baseline

The addition of time contextual features to the base transformer model contributed ~5% in 
improved performance

Effect of Time Contextual Features

Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence

5% 
lift
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Baseline

A more sophisticated encoder architecture with ~2x parameter size led to an additional 
~13% improvement in performance

Effect of Transformer Encoder Architecture

Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence

13% 
improvement
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Finally, expanding the sequence length ~1.3x contributed a further 8% improvement

Effect of Longer Sequence Length

Baseline Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence

8% 
improvement
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The switch to Transformers, addition of time contextual features, more sophisticated 
encoder architecture, and longer sequence lengths all contributed significantly to the 
overall performance improvement of the model

Performance of Transformers vs. Previous Model

Baseline Previous 
Model

Transformer Models

Tree Based 
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M) 
+ time features 

+ longer sequence

20%
lift 5% 

lift 7% 
lift 8% 

lift
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However, each technique leading to model performance improvement also 
increased model complexity and train/eval time

+ Time 
Contextual 
Features

+ New 
Encoder 

Architecture

Base 
Transformer 

Model

+ Longer 
Sequence 

Length



24

Other optimization methods have also proven effective in our efforts to scale up 
the Transformer-powered recommender model

Method Experiments Train Time (↓) Log Loss (↓) AUROC (↑)

Architecture Transformer 
small → medium 222% ↑ 8.0% ↓ 1.4% ↑

Feature Addition Time features 13% ↑ 4.5% ↓ ~

Max Seq Length 3x longer 274% ↑ 7.8% ↓ 2.6% ↑

Multi-GPU 1x → 2x A100 20% ↓ ~ 1.7% ↑

Batch size 2x 47% ↓ ~ 1.3% ↑

Optimizer choice SGD / AdamW /
AdaFactor ~ ~ ~

Mixed precision FP32 → TF32 3% ↓ ~ 1.2% ↑
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Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work



26

Helpful Takeaways and Actionable Insights

Scaling:
1. Recommend distributed compute and multi-GPU acceleration where possible

○ Speeds up workflows
○ High GPU utilization is important

2. Sequence length vs performance tradeoffs
○ Full self-attention quadratic scaling in computational complexity

Streamlined pipeline:
1. Data-centric methods and model-centric methods both significantly improved performance

○ Scalable data preprocessing
○ Modular/flexible model training frameworks
○ Having both allows for focus on experimentation 
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● Additional input features and 
embeddings

● Explore best method to add 
such features

● Explainability and attribution

Our current and future work includes continued R&D and scaling where appropriate

● Test more transformer 
architectures, optimizers, 
training schemes

● Apply different positional 
encoding methods

● Optimize inference throughput 
and latency

● Real-time applications

Architecture Features Infrastructure
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Thank you!
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Transformer4Rec’s popular use case is next-item prediction, but certain financial 
services applications align better to classification

● NextItemPrediction is the most popular use-case for T4Rec:
○ Show ad of product you think they will book next based on products booked in recent past

○ Financial Services customers do not typically book multiple products in quick succession

● Instead, we need to classify a sequence of experiences (e.g., impressions) as ending in a 
conversion or not
○ Then we score ads w/ probability of conversion based on learned parameters, picking 

highest-scoring ad to show next



30

The training procedure differs between the general language case and the 
presented financial services application of Transformers

● In general, language models are pretrained (self-supervised learning) on a large 
corpora of text with a specific task

○ Encoder models usually have the task of masked language modeling (MLM)
○ Decoder models usually have the task of casual language modeling (CLM)

● Pretrained models are then fine-tuned on downstream tasks, like question answering, 
sentiment analysis, autocompletion, etc.

Masked Language Modeling: Randomly masking some percentage 
of the input data and ‘filling in the blanks’

Causal Language Modeling: Predicting the next token 
following a sequence of tokens


