
Scaling a Transformer-Powered Recommendation Model for
Personalized Online Advertising

Kalanand Mishra, Snehita Varma, and Benjamin Wu
Capital One Data Science

March 20, 2024

#ᴅʟᴘ_MICRODOT [{'title': 'Data Security Classification', 'text': 'Confidential'}]_END

2

Many mobile & web apps offer unique channels for serving highly personalized
messages and product recommendations for authenticated customers

A recommender system can be used to
determine the best message to serve each

user

The type, location, and
objective of each

message can vary

Message 1

TRAVEL CARD …0987

$45678
CURRENT BALANCE

CHECKING ACCOUNT …0123

$9,01234
CURRENT BALANCE

Message 4

Message 2

Message 3Only one message can be
shown in a set location at

a given time
Best

Message?

Data is for illustrative purposes only

3

Summary of Presentation

● A multi-step, multi-objective Recommendation Engine personalizes messages shown to
a visitor

○ Previous tree-based ensemble models did not take into account sequenced data on user
interactions

● Today: Transformer-based Recommender Engine

○ Applies self-attention to learn most relevant interactions from visitor’s sequence

○ Utilizes NVIDIA Merlin’s NVTabular and Transformers4Rec packages to achieve:

- 35% gain in prediction quality in the experimentation data

- Robust scaling solutions for preprocessing and modeling on user data size of hundreds of
millions

4

Experiments with Transformer-powered recommendation systems show 35%
improvement in model performance metric for all users

Performance of Transformers vs. Previous Model

Baseline Previous
Model

Transformer Models

35%
improvement

5

Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work

6

Relatively small catalogue sizes, low sparsity interactions, and multi-objective ranking
require a recommender system that differs from those in typical e-commerce applications

Benchmark
Dataset

User # Item # Interaction Sparsity Interaction Type Time
Stamp

User
Context

Item
Context

Interaction
Context

Amazon*
(Books) 8,026,324 2,330,066 22,507,155 99.9999%

Rating
[0-5] ☆

Y - Y -

Steam* 2,567,538 32,135 7,793,069 99.99% Buy Y - Y Y

Netflix*
(Prize data) 480,189 17,770 100,480,507 98.82%

Rating
[1-5] ☆

Y - - -

Example
Financial
Institution

~ 100 MM ~ 1000 ~ 4 B ~ 70%*
Clicks /
conversions /
engagement

Y Y Y Y

* Open source sample datasets available at
https://github.com/RUCAIBox/RecSysDatasets

Relatively smaller
catalog size, but with

multiple objectives

User-item interactions and
data sparsity are

fundamentally different

Rich and accurate
user context (KYC)

Events could be
delayed by several

days

… bringing us from next item prediction into the classification domain

https://github.com/RUCAIBox/RecSysDatasets

7

Previous tree-based ensemble models took into account a user’s context, but did not
leverage sequential user data

● Train model to predict conversion based on input configuration
● Score candidate messages based on trained parameters, pick highest scoring message to show next

R
an

ke
d

Li
st

 o
f M

es
sa

ge
s

Binary
Classifier

Probability of conversion
if Jane sees Message 1 = 0.03

… etc.
 = 0.0

Probability of conversion
if Jane sees Message 2 = 0.02

Date Customer Message
Objective

Owns a
credit
card?

Convert

2/27/2024 Jane CD 1 0

3/2/2024 Jane Auto Finance 1 0

3/3/2024 Jane Savings 1 0

3/15/2024 Jane Travel Card 1 1 (Savings
Account)

Session-Level Data Structure

Input Space Response

Data is for illustrative purposes only

8

Sequence modeling utilizes historical sequence data and serves the right message to
the right individual more often, stimulating performance lift

Advantages:
● Keeps track of the temporal order of a

user’s visit history
● Learns how to credit their conversion to the

appropriate prior experiences

Non-recent
impression

Saturday
impression

Tuesday
impression

Converts to
Savings Account

on Saturday

High RelevanceLow Relevance Low Relevance

Time

Data is for illustrative purposes only

9

A Transformer-powered architecture can utilize self-attention to learn from user
sequential behavior and provide more relevant predictions

… … …...

Probability of
ConversionBinary Classifier

t1 t2 tn
...

Transformer
Encoder

...
T1 T2 Tn

E1 E2 En...

Features at Time Step 1

Cu
st

om
er

 D
at

a
@

 t 1

In
te

ra
ct

io
n

Da
ta

 @
 t 1

O
bj

ec
tiv

e
@

 t 1

Co
nt

ex
tu

al
 D

at
a

@
 t 1

Features at Time Step n

Cu
st

om
er

 D
at

a
@

 t n

In
te

ra
ct

io
n

Da
ta

 @
 t n

O
bj

ec
tiv

e
@

 t n

Co
nt

ex
tu

al
 D

at
a

@
 t n

...

A user’s journey can be translated into
input features at various interaction
times

Notable Differences:
● Transformer encoder architecture
● Train from scratch
● Binary classification instead of next-item

prediction

Time

Features at Time Step 2

Cu
st

om
er

 D
at

a
@

 t 2

In
te

ra
ct

io
n

Da
ta

 @
 t 2

O
bj

ec
tiv

e
@

 t 2

Co
nt

ex
tu

al
 D

at
a

@
 t 2

Feature Processing

10

This supervised training process differs from how Transformers are typically
trained for NLP use cases

● Though Transformers typically have a pretraining component and masking module,
this framework has neither

● Binary targets are explicitly passed in and modeled on directly
○ Transformer gets signal from divergence between true target and predicted label,

rather than masked target and prediction over mask

X
(Customer

Sequences)

y
(Target)

Add & Norm

Feed Forward

Add & Norm

Multi Head
Attention

Softmax

Linear

ŷ
(Conversion
Probabilities)

DIV(y, ŷ)

Encoder Binary
Classification

HeadNx

11

Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work

12

For data preprocessing in this framework, we use NVIDIA Merlin’s NVTabular to
make use of GPU powered acceleration

● NVTabular is the ETL part of NVIDIA’s Merlin ecosystem that allows for end-to-end
GPU-Accelerated and Distributed pipelines.

● It takes us from a tabular representation, like the one we currently model on, to a sequential one.

Date User Message Day of
Week

Target

8/01/23 1 1 1 0

8/02/23 1 2 2 0

8/03/23 1 3 3 0

8/04/23 1 4 4 1

Event-Level Data Structure

Latest
Date

User Message
Sequence

DayOfWeek
Sequence

Target

8/04/23 1 <1,2,3,4> <1,2,3,4> 1

Customer-Level Data Structure

Input Space

Input Space

Response

Response

NVTabular

● Feature Engineering
○ Filtering, imputing, binning,

aggregating, slicing, padding etc
● Preprocessing

○ Continuous features -
normalization, transformation

○ Categorical features: encode
○ Pre-shuffle and store to disk

● Data Loader
○ Load data at high throughput
○ Shuffle data on the fly

13

Model Training: NVIDIA Merlin Transformers4Rec library provides GPU-accelerated
Deep Learning framework tailored for Recommendation Systems

● Leverages SOTA NLP architectures from the Hugging Face Transformers library,
allowing experimentation with many different Transformer architectures

● NVIDIA Merlin Transformers4Rec provides many out-of-the-box capabilities:
✓ Provides a classification framework that allows us to predict probabilities of conversion based

on input features — other packages only provide next-item prediction framework

✓ Integrates user feedback and contextual features, enabling any type of sequential tabular data

✓ Modular nature provides flexibility to design ML systems for unique needs

Conversion
probabilities

0.7

0.6

0.9

…

14
CONFIDENTIAL

An end-to-end pipeline takes advantage of multi-GPU acceleration and modularity with
state of the art open-source transformer models

Training and Evaluation Outputs

T4Rec Meta
Architecture

Pytorch modelMerlin
DataLoader

Trainer() to
fit and

evaluate

Trained
Model

Predictions/
Embeddings

Metrics
(TensorBoard)

Data in
sequential

format

Schema
config

Inputs

NVTabular
Preprocessing

 Tabular Data

Legend
Transformers4Rec

Merlin & NVTabular

HuggingFace Transformers

Model Parameters
(w/ Bayesian optimization)

Transformer Architecture

Optimizer Sequence
Length

Data preprocessing scaled with PySpark distributed compute,
and sequentialization via multi-GPU NVTabular

Model training and evaluation using Transformers4Rec scaled with multi-GPU
DistributedDataParallel, with hyperparameter tuning via Optuna

M
od

el
 P

ip
el

in
e

Sc
al

in
g

…
Optuna

15

Typical Evaluation Framework

Dataset Time Range Class Balance # Rows # Sequences

Training ~1 month 1:1 ~ 50 M ~ 2 M

Validation ~3 days Original ratio
(high imbalance) ~ 200 M ~ 3 M

Test ~3 days Original ratio
(high imbalance) ~ 200 M ~ 3 M

Experimental Methods:
● Transformer Architecture
● Additional Input Features
● Sequence Length
● Performance based on user visit frequency
● Hyperparameter Tuning
● Optimize for Binary Cross Entropy (Log Loss)

Data is for illustrative purposes only

16

Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work

17

Experimental results show considerable improvement of transformer model performance
relative to the previous tree-based classifier, resulting in 35% lift in a key metric

Performance of Transformers vs. Previous Model

35%
improvement

Baseline Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

18

The initial switch to a lightweight transformer encoder architecture offered 20%
improvement over the previous tree-based model

Baseline Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

20%
lift

Performance of Transformers vs. Tree-based Model

19

Baseline

The addition of time contextual features to the base transformer model contributed ~5% in
improved performance

Effect of Time Contextual Features

Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

5%
lift

20

Baseline

A more sophisticated encoder architecture with ~2x parameter size led to an additional
~13% improvement in performance

Effect of Transformer Encoder Architecture

Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

13%
improvement

21

Finally, expanding the sequence length ~1.3x contributed a further 8% improvement

Effect of Longer Sequence Length

Baseline Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

8%
improvement

22

The switch to Transformers, addition of time contextual features, more sophisticated
encoder architecture, and longer sequence lengths all contributed significantly to the
overall performance improvement of the model

Performance of Transformers vs. Previous Model

Baseline Previous
Model

Transformer Models

Tree Based
Model

Transformer (S) Transformer (S)
+ time features

Transformer (M)
+ time features

Transformer (M)
+ time features

+ longer sequence

20%
lift 5%

lift 7%
lift 8%

lift

23

However, each technique leading to model performance improvement also
increased model complexity and train/eval time

+ Time
Contextual
Features

+ New
Encoder

Architecture

Base
Transformer

Model

+ Longer
Sequence

Length

24

Other optimization methods have also proven effective in our efforts to scale up
the Transformer-powered recommender model

Method Experiments Train Time (↓) Log Loss (↓) AUROC (↑)

Architecture Transformer
small → medium 222% ↑ 8.0% ↓ 1.4% ↑

Feature Addition Time features 13% ↑ 4.5% ↓ ~

Max Seq Length 3x longer 274% ↑ 7.8% ↓ 2.6% ↑

Multi-GPU 1x → 2x A100 20% ↓ ~ 1.7% ↑

Batch size 2x 47% ↓ ~ 1.3% ↑

Optimizer choice SGD / AdamW /
AdaFactor ~ ~ ~

Mixed precision FP32 → TF32 3% ↓ ~ 1.2% ↑

25

Agenda

● Description of the problem

● Transformer based Recommender System
○ Data preprocessing
○ Model training
○ Evaluation

● Scalability and performance

● Conclusion and future work

26

Helpful Takeaways and Actionable Insights

Scaling:
1. Recommend distributed compute and multi-GPU acceleration where possible

○ Speeds up workflows
○ High GPU utilization is important

2. Sequence length vs performance tradeoffs
○ Full self-attention quadratic scaling in computational complexity

Streamlined pipeline:
1. Data-centric methods and model-centric methods both significantly improved performance

○ Scalable data preprocessing
○ Modular/flexible model training frameworks
○ Having both allows for focus on experimentation

27
CONFIDENTIAL

● Additional input features and
embeddings

● Explore best method to add
such features

● Explainability and attribution

Our current and future work includes continued R&D and scaling where appropriate

● Test more transformer
architectures, optimizers,
training schemes

● Apply different positional
encoding methods

● Optimize inference throughput
and latency

● Real-time applications

Architecture Features Infrastructure

28

Thank you!

29

Transformer4Rec’s popular use case is next-item prediction, but certain financial
services applications align better to classification

● NextItemPrediction is the most popular use-case for T4Rec:
○ Show ad of product you think they will book next based on products booked in recent past

○ Financial Services customers do not typically book multiple products in quick succession

● Instead, we need to classify a sequence of experiences (e.g., impressions) as ending in a
conversion or not
○ Then we score ads w/ probability of conversion based on learned parameters, picking

highest-scoring ad to show next

30

The training procedure differs between the general language case and the
presented financial services application of Transformers

● In general, language models are pretrained (self-supervised learning) on a large
corpora of text with a specific task

○ Encoder models usually have the task of masked language modeling (MLM)
○ Decoder models usually have the task of casual language modeling (CLM)

● Pretrained models are then fine-tuned on downstream tasks, like question answering,
sentiment analysis, autocompletion, etc.

Masked Language Modeling: Randomly masking some percentage
of the input data and ‘filling in the blanks’

Causal Language Modeling: Predicting the next token
following a sequence of tokens

