

A Transformer-Powered Recommendation Engine for Personalized Online Advertising

Kalanand Mishra, Snehita Varma, and Jesse Zymet Capital One Data Science

September 21, 2022

We govern personalized recommendation / advertising for the Capital One homepage

No impact, no worries Check if you're pre-approved for card offers with no impact to your credit score.

See if I'm Pre-Approved >

Bank accounts Checking? Savings? CDs? Teens? Kids? We've got you covered.

Compare Accounts >

Easier car buying Pre-qualify to see your real rate and payment before visiting the dealer.

Check Out Auto Navigator >

...

Summary of Presentation

- To personalize the banner shown to a visitor, we employ a contextual multi-armed bandit powered by the XGBoost algorithm
 - System takes visitor contextual features as input, e.g. products they already own
- Algorithm cannot take into account sequenced data on user experiences / behaviors
 E.g., fails to appropriately capture impression sequence leading up to conversion
- Today: POC that replaces XGBoost with the Transformer from Deep NLP

 Uses self-attention to learn from sequenced data which experiences in a visitor's journey were relevant to their outcome
- We recruit NVIDIA's **Transformers4Rec software package** to achieve significant gains in prediction quality

We employ NVIDIA's Transformers4Rec library to show big recommendation improvements for repeat visitors to our homepage

Transformer Homepage SiteMAB (XGBoost)

Agenda

- Description of the problem
- What is a Transformer? Rationale for it in Recommender Systems
- Site personalization POC
- Performance
- Conclusion and future work

Repeat visitors are 60% of the Capital One's homepage visitor population

Frequent visitors convert at higher rates and are major drivers of lifetime value

Conversion Rate by Condition and Number of Visits

Our recommendation engine is a contextual multi-armed bandit with exploitation component consisting of an XGBoost model

- Epsilon-greedy approach:
 - Random 5% of visitors are served random advertisement (exploration)
 - The rest are served a personalized experience powered by XGBoost (exploitation)
- Day's visitors react to served ads; model retrained the next morning with the new data

Our XGBoost model takes into account our visitors' context, but does not capture visitor data as a sequence of experiences

- Train model to predict conversion based on input configuration
- Score candidate ads based on trained parameters, pick highest scoring ad to show next

Ranked List of Banners

Our non-sequential model cannot learn which experiences in a visitor's history were relevant to conversion, limiting its ability to serve the best ads

Sequence modeling would optimize for this population and serve the right banner to the right individual more often, stimulating lift

11

Agenda

- Description of the problem
- What is a Transformer? Rationale for it in Recommender Systems
- Site personalization POC
- Performance
- Conclusion and future work

The Transformer is a deep learning model from NLP – it uses Attention to learn how relevant a word is to sentiment in sentences *with different contexts*

13

The same model can be used for personalized recommendation – to learn from Jane's context *and her sequence of experiences leading up to conversion*

The Transformer can learn to *pay attention* to the most relevant experiences from Jane's history, so as to serve better recommendations to visitors like her

360 PERFORMANCE SAVINGS A superior savings rate Earn one of the nation's best savings rates—plus no fees or minimums.

Introducing

Venture X

Venture X has arrived—our new travel rewards

card designed to take you further.

We employ the Attention-powered Transformer to solve the attribution problem

- The **Transformer** (Vaswani et al. 2017) is a state-ofthe-art algorithm from Deep Learning and NLP.
 - E.g., Yang et al. 2019 on text classification
- Transformers have outperformed its competitors on various *recommendation tasks*:
 - Uses Attention to learn from data how to attribute visitor's conversion to appropriate past experiences
 - See e.g. Sun et al. 2019, Kang et al. 2018
- Attention-powered systems have outperformed competitors on *attribution problems like ours*:
 - See esp. <u>Arava et al. 2018</u> on comparing RNNs w/ Attn against plain LSTM
 - Also Ren et al. 2018, Kumar et al. 2020, etc.

Brief overview of concepts underlying Transformers

- Unlike RNNs, Transformers are non-sequential algo's:
 - Relative ordering between sequential timesteps captured with *positional encoding*
- Uses *Self-attention mechanism* to capture context / relevance of a timestep within broader sequence

Attention $(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right) V$

- Self-attention applied iteratively in stack of Attention blocks to capture higher-order interactions
- Originally consisted of encoder & decoder our model (ALBERT) is encoder-only

Our supervised training process differs from how Transformers are typically trained for NLP use cases

- Though Transformers typically have a pretraining component and masking module, our framework has neither
- Binary targets are explicitly passed in and modeled on directly
 - Transformer gets signal from divergence between true target and predicted label, rather than masked target and prediction over mask

Agenda

- Description of the problem
- What is a Transformer? Rationale for it in Recommender Systems
- Site personalization POC
- Performance
- Conclusion and future work

NVIDIA provides GPU-accelerated Deep Learning packages tailored for Recommender Systems

- We evaluated multiple packages Transformers4Rec (NVIDIA), Recbole, Hugging Face
- Transformers4Rec provides the most out-of-the-box capabilities:
 - Provides a classification framework that allows us to predict probabilities of conversion based on input features — other packages only provide next-item prediction framework
 - \checkmark Integrates user feedback and contextual features
 - \checkmark Modular nature gives us flexibility to design Transformer architecture for our unique needs

We built a Transformer-powered recommendation algorithm that employs NVIDIA's *Transformers4Rec* package

- Data: SiteMAB data for Homepage (June 30 -August 10, 2021)
- ~ 50 features:
 - Previous Site impressions
 - Product ownership
 - Login count
 - Device type (Mobile, Tablet, Mac, etc.)
 - Browser type (Firefox, Safari, Chrome, etc.)
 - Bank page visits
 - Card page visits

Image adapted from Hugging Face Transformers Course

For data preprocessing we use NVIDIA's *NVTabular* to make use of GPU powered acceleration

- T4rec and NVTabular are part of NVIDIA's Merlin ecosystem that allows for end-to-end GPU-Accelerated and Distributed pipelines.
- NVTabular, as part of the NVIDIA Merlin ecosystem, is a wrapper over the RAPIDS Dask-CuDF library.
- Allows for GPU-Accelerated data operations like transformations, aggregations, slicing & padding.
- It takes us from a tabular representation, like the one we currently model on (SiteMAB), to a sequential one.

Session-Level Data Structure

Overview of our end-to-end Transformer POC pipeline

 POC uses Legoland instances with NVIDIA V100 GPUs with 256 GB memory, processing units that feature the Volta architecture

Despite its size and complexity, the Transformer can be used for daily batch scoring or real-time scoring

	Partition Type	Train Size	Test Size	Fitting Time	Evaluation Time	Scoring Time (12 variants - like SiteMAB)
ALBERT 16 heads 12 layers Dimension of embedding = 64 Epochs per iteration = 20	80% train (downsampled* 50/50) 20% test (unsampled) Partitioned by day	100k customers	2M customers	~30 minutes ~3.8k customers per minute	~5 minutes ~344k customers per minute	~ 4.25 hours ** to score 50mm customers daily - 8 <u>V100 Instance</u> Distributed Inference ~200k customers per minute

* Downsampling required for two reasons:

- 1. Fit is relatively slow otherwise (need multi-GPU)
- 2. Transformer struggles with class imbalance (i.e., the fact that only ~0.1% of customers convert)

** This includes operations to 'enrich' feature vectors to predict at t+1

Agenda

- Description of the problem
- What is a Transformer? Rationale for it in Recommender Systems
- Site personalization POC
- Performance
- Conclusion and future work

In our POC, we tested the Transformer against our current model and measured performance across two segments of Site users

Segment #1 single-visit users (40% of sample)

- **Transformer** underperforms existing model when a user lacks enough history to compose a sequence
- Does not exhibit trends of learning throughout time

Segment #2 repeat-visit users (60% of sample)

- Performance improves over time
- Some warm up period needed, with large lift thereafter

Across the segment of repeat visitors, the sequence-capable model outperforms the baseline algorithm by a wide margin

Number of Visits	Transformer ROC AUC	XGBoost ROC AUC	
≥2	0.88	0.80	
≥ 3	0.90	0.78	
≥ 4	0.90	0.77	
≥ 5	0.90	0.75	

Agenda

- Description of the problem
- What is a Transformer? Rationale for it in Recommender Systems
- Site personalization POC
- Performance
- Conclusion and future work

Conclusion and future work

- In our POC, we replaced XGBoost with NVIDIA's Transformers4Rec framework
 - Transformer learns to credit a visitor's conversion to appropriate prior experiences, unlocking sequenced data for classification
- Work under progress today:
 - Apply Transformers4Rec to Capital One authenticated space
 - Pipeline to map sequenced data to embeddings, to use as features in flat models
 - Work with NVIDIA to enable multi-GPU training
 - Look into click sequence, webpage visit sequence, etc.
- Some more theoretical lines of future work:
 - Compare against LSTM, LSTM w/ Attn. (cf. Arava et al. 2018)
 - Model absolute timestep rather than relative ordering (<u>Li et al. 2020</u>)
 - Compare incremental vs. batch learning
 - Explore how same / similar system can be used for performance reporting

Acknowledgment

• We thank **Jacob Dineen** (now a CS graduate student at Arizona State University) for invaluable assistance throughout the engineering process

Thank you!

Appendix

Transformer4Rec's popular use case is next-item prediction, but ours is classification

- NextItemPrediction is the most popular use-case for T4Rec:
 - Show ad of product you think they will book next based on products booked in recent past

- CapOne customers do not usually book multiple products in quick succession
- Instead, we need to classify a sequence of experiences (e.g., impressions) as ending in a conversion or not
 - Then we score ads w/ probability of conversion based on learned parameters, picking highest-scoring ad to show next

The training procedure differs between the general language case and our application of Transformers

- In general, language models are *pretrained* (*self-supervised learning*) on a large corpora of text with a specific task
 - Encoder models usually have the task of masked language modeling (MLM)
 - Decoder models usually have the task of casual language modeling (CLM)
- *Pretrained* models are then fine-tuned on downstream tasks, like question answering, sentiment analysis, autocompletion, etc.

Masked Language Modeling: Randomly masking some percentage of the input data and 'filling in the blanks'

Causal Language Modeling: Predicting the next token following a sequence of tokens

"Pooled" crediting strategy fails to capture impression recency

- Accumulate # past impressions for each banner as we move down timesteps, with no signal of recency
- Poor strategy for frequent visitors, esp. those that come to Homepage 8 or more times (> 10% population, significant source of lift)

visitor	num_times_ saw_autonav	num_times_ saw_savings	num_times_ saw_ventr		has_credit_ card	convert_ to_savings
Jane	1	0	0	•••	yes	no
Jane	1	0	0	•••	yes	no
Jane	1	1	0	•••	yes	no
Jane	1	1	1	•••	yes	yes

Tracking which impression was seen at which previous timestep explodes the number of features and leads to training inefficiency

- Features for...
 - Most recent visit: saw_ventr_frst_rcnt, saw_savings_frst_rcnt, ...
 - Second-most-recent visit: saw ventr scnd rcnt, saw savings scnd rcnt, ...
 - Third-most-recent visit: saw_ventr_thrd_rcnt, saw_savings_thrd_rcnt, ...
 - ... etc.
- Suppose AutoNav banner is best for a small population *across every timestep*:
 - Fewer data points on COAF conversions
 - Model needs lots of data at each timestep to mimic *time-insensitive generalization*
 - Need algorithm that shares generalizations (i.e., parameters) across timesteps

