

Effect of reco and trigger efficiency correction on shape

More details in Analysis Note: AN-11-266

Kalanand Mishra

All efficiency tables provided by Jeffrey Berryhill

Jeff's recommendation for trigger use (I)

8 Trigger selection

- 8.1 Run2010: Runs 136033-149442
 - Muon data: Mul1_v* OR Mul7_v*
 - Electron data: Ele10_* OR Ele15_* OR Ele17_*
- 8.2 Run2011A: Menus 5E32 (Runs: 160404–163869), 1E33 (Runs:165088-166967), and 1.4E33 (Runs:167039-167913)
 - Muon data:

IsoMu17_v* OR Mu30_v*

Note: We really needed to OR in the nonisolated muon trigger as it recovers about half of the offline-isolated muons rejected by IsoMu, increasing the trigger efficiency by 5%.

Electron data:

Ele27_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_v* 5E32 epoch Ele17_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT15_v* 1E33 epoch

Ele22_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20_v* 1.4E33 epoch

CMS

Jeff's recommendation for trigger use (II)

8.3 Run2011A :Menu 2E33, Runs 170249-173198

 Muon data: (IsoMu17_v13 OR IsoMu20_v8 OR IsoMu24_v8) OR (Mu30_v7 OR Mu40_v5)

Note: This epoch was complicated because Mu30, IsoMu17, and IsoMu20 were all prescaled for brief periods, so we could either break it down into sub-epochs or lump them together. We chose the latter because it is predominantly IsoMu17 and the sub-epoch lumi accounting is painful.

• Electron data:

Ele22_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20_v* v1.1 epoch 170249–170759 HLT_Ele27_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20_v* v1.2 epoch 170826–173198

8.4 Run2011A:Menu 3E33, Runs: 173236-173692

- Muon data: HLT_IsoMu20_v9 OR HLT_Mu40_eta2p1_v1
- Electron data: Ele27_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20_v*

8.5 Run2011B: Menu 3E33, Runs: 175832-178380

 Muon data: (IsoMu30_eta2p1_v3 OR IsoMu24_eta2p1_v3 OR IsoMu24_v9 OR IsoMu20_v9) OR (Mu40_eta2p1_v1 OR HLT_Mu40_v6)

Jeff's recommendation for trigger use (III)

 Electron data: Ele27_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_CentralJet30_CentralJet25_PFMHT20_v2 (v2.0-v2.2, 175832–176309) OR Ele30_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_DiCentralJet30_PFMHT25_v1 (v2.3-v5.0, 176461–178380)

8.6 Run2011B: Menu 5E33, Runs: 178420-end

Muon data:

```
(IsoMu30_eta2p1_v6 OR IsoMu24_eta2p1_v6 OR IsoMu24_v12 OR
IsoMu30_eta2p1_v7 OR IsoMu24_eta2p1_v7 OR IsoMu24_v13)
OR
(Mu40_eta2p1_v4 OR Mu40_v9) (v1.4, 178420-179889)
OR (Mu40_eta2p1_v5 OR Mu40_v10) (v2.2, 179959-end)
```

 Electron data: Ele30_CaloIdVT_CaloIsoT_TrkIdT_TrkIsoT_DiCentralJet30_PFMHT25_v1_

Efficiency calculation for cross triggers (I)

$$\epsilon_{\text{Data}}^{HLT} = \text{eff}(\text{Ele27}) \times \text{eff}(\text{jet1}, \text{jet2}) \times \text{eff}(\text{MHT20}), \tag{1}$$

where

$$\begin{array}{ll} {\rm eff(jet1,jet2)} &=& {\rm eff30(jet1)} \times {\rm eff30(jet2)} + \\ && {\rm eff30(jet1)} \times {\rm eff25!30(jet2)} + \\ && {\rm eff30(jet2)} \times {\rm eff25!30(jet1)}. \end{array} \tag{2}$$

If there are N jets we need to systematically consider all combinations of disjoint subcases, *i.e.*, whether a given jet

- passes jet30,
- fails jet30 and passes jet25, or
- fails both.

Thus,

eff(jet1,, jetN)	=	sum over all n-jet products of efficiency outcomes,	
		where any term with 2 jet30's or a jet30/jet25!30 pair	
		is kept, and the rest are discarded.	(3)
		Kalanand Mishra, Fermilab	5 / 28

Efficiency calculation for cross triggers (II)

For N = 3, this leads to 27 subcases, 16 of which are kept. Consider all 3-digit base 3 numbers and keep all of them which have a pair of 2's or a 1 and a 2. Therefore, efficiency of the "HLT_Ele27_CentralJet30_CentralJet25_PFMHT20" trigger for offline selected electron+ $\not\!\!E_T$ + 3jet events is given by:

$$\epsilon_{\text{Data}}^{HLT} = \text{eff}(\text{Ele27}) \times \text{eff}(\text{jet1}, \text{jet2}, \text{jet3}) \times \text{eff}(\text{MHT20}),$$

where

$$eff(jet1, jet2, jet3) = [1 - eff30(jet1) - eff25!30(jet1)] \cdot eff25!30(jet2) \cdot eff30(jet3) (i.e., term"012") +"021" + "022" + "102" + "112" + "120" + "121" + "122" + "201" +"202" + "210" + "211" + "212" + "220" + "221" + "222". (5)$$

The N jet generalization is as follows. Consider all N-digit base-3 numbers

```
for i[1] = 0 to 2
for i[2] = 0 to 2
...
for i[N] = 0 to 2
```

```
if i[1], ..., i[N] has a pair of 2's or a 1 and a 2
effN += effi[1](jet1) * effi[2](jet2) * ... effi[N](jetN),
```

In the present analysis we only care about events which have either 2 or 3 offline reconstructed jets. In later slides I will show plots where I lump both categories of events together.

(4)

Efficiency calculation for cross triggers (III)

Lepton+Jet30+Jet30+MHT triggers

The formulae on the previous slide simplify if the two jet legs are equal:

 $eff(jet1, jet2) = eff30(jet1) \times eff30(jet2).$

 $\begin{array}{ll} {\rm eff}({\rm jet1},{\rm jet2},{\rm jet3}) &=& \left[1-{\rm eff30}({\rm jet1})\right]\cdot {\rm eff30}({\rm jet2})\cdot {\rm eff30}({\rm jet3}) + \\ & {\rm eff30}({\rm jet1})\cdot \left[1-{\rm eff30}({\rm jet2})\right]\cdot {\rm eff30}({\rm jet3}) + \\ & {\rm eff30}({\rm jet1})\cdot {\rm eff30}({\rm jet2})\cdot \left[1-{\rm eff30}({\rm jet3})\right] + \\ & {\rm eff30}({\rm jet1})\cdot {\rm eff30}({\rm jet2})\cdot {\rm eff30}({\rm jet3}). \end{array}$

Jeff provided us "luminosity weighted average (LWA)" efficiency for each leg separately.

Muon HLT efficiency table

p _T range (GeV)	η range	€Data	η range	€Data
25-30	-2.11.5	0.8490 ± 0.0032	1.5-2.1	0.8457 ± 0.0033
	-1.51.0	0.8725 ± 0.0032	1.0-1.5	0.8628 ± 0.0032
	-1.00.5	0.9057 ± 0.0026	0.5-1.0	0.8999 ± 0.0027
	-0.5- 0.0	0.9211 ± 0.0022	0.0-0.5	0.9251 ± 0.0022
30-35	-2.11.5	0.8797 ± 0.0031	1.5-2.1	0.8768 ± 0.0031
	-1.51.0	0.9136 ± 0.0030	1.0-1.5	0.9016 ± 0.0031
	-1.00.5	0.9397 ± 0.0025	0.5-1.0	0.9387 ± 0.0025
	-0.5- 0.0	0.9579 ± 0.0022	0.0-0.5	0.9556 ± 0.0021
35-40	-2.11.5	0.8816 ± 0.0027	1.5-2.1	0.8894 ± 0.0026
	-1.51.0	0.9142 ± 0.0025	1.0-1.5	0.9008 ± 0.0026
	-1.00.5	0.9385 ± 0.0022	0.5-1.0	0.9385 ± 0.0021
	-0.5- 0.0	0.9571 ± 0.0019	0.0-0.5	0.9546 ± 0.0019
40-45	-2.11.5	0.8878 ± 0.0024	1,5-2.1	0.8902 ± 0.0024
	-1.51.0	0.9221 ± 0.0021	1.0-1.5	0.9076 ± 0.0022
	-1.00.5	0.9443 ± 0.0020	0.5-1.0	0.9457 ± 0.0019
	-0.5-0.0	0.9622 ± 0.0018	0.0-0.5	0.9617 ± 0.0018
45-50	2.11.5	0.8922 ± 0.0029	1.5-2.1	0.8934 ± 0.0028
	-1,51.0/	0.9202 ± 0.0027	1.0-1.5	0.9069 ± 0.0027
	-1.00.5	0.9458 ± 0.0024	0.5-1.0	0.9437 ± 0.0025
	-0.5- 0.0	0.9625 ± 0.0023	0.0-0.5	0.9615 ± 0.0023
50-200	-2.11.5	0.8920 ± 0.0031	1.5-2.1	0.8903 ± 0.0032
	1.51.0	0.9178 ± 0.0030	1.0-1.5	0.9041 ± 0.0030
	-1.00.5	0.9419 ± 0.0027	0.5-1.0	0.9424 ± 0.0028
	-0.5 0.0	0.9606 ± 0.0026	0.0-0.5	0.9604 ± 0.0025

Some variation observed in p_T , η

Kalanand Mishra, Fermilab

Muon isolation efficiency data/MC scale factor

p _T range (GeV)	η range	EMC	η range	CData SMC
25-30	-2.11.5	1.00 ± 0.00	1.5-2.1	1.00 ± 0.00
	-1.51.0	0.99 ± 0.00	1.0-1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5-1.0	1.00 ± 0.00
	-0.5- 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.02
30-35	-2.11.5	1.00 ± 0.00	1.5-2.1	1.00 ± 0.00
	-1.51.0	0.99 ± 0.00	1.0 - 1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5 - 1.0	1.00 ± 0.00
	-0.5- 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.00
35-40	-2.11.5	0.99 ± 0.00	1.5-2.1	1.00 ± 0.00
	-1.51.0	0.99 ± 0.00	1.0-1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5-1.0	1.00 ± 0.00
	-0.5- 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.00
40-45	-2.1– -1.5	1.00 ± 0.00	1.5-2.1	1.00 ± 0.01
	-1.51.0	0.99 ± 0.00	1.0-1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5-1.0	1.00 ± 0.00
	-0.5- 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.00
45-50	-2.11.5	1.00 ± 0.00	1.5-2.1	1.00 ± 0.00
	-1.51.0	0.99 ± 0.00	1.0-1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5 - 1.0	1.00 ± 0.00
	-0.5- 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.00
50-200	-2,11.5	1.00 ± 0.00	1.5-2.1	1.00 ± 0.00
	-1.51.0	0.99 ± 0.00	1.0-1.5	1.00 ± 0.00
	-1.00.5	1.00 ± 0.00	0.5 - 1.0	1.00 ± 0.00
	-0.5 0.0	1.00 ± 0.00	0.0-0.5	1.00 ± 0.00

Flat in pt, eta

Kalanand Mishra, Fermilab

Electron reco/ID efficiency data/MC scale factor

	p _T range (GeV)	η range	<u>€Data</u> €MC	η range	EData EMC	
	30-35	-2.51.5	1.0096 ± 0.0062	1.5-2.5	1.0094 ± 0.0015	
		-1.5- 0.0	1.0060 ± 0.0029	0.0–1.5	1.0021 ± 0.0029	
	35-40	-2.51.5	1.0038 ± 0.0043	1.5-2.5	1.0135 ± 0.0040	
		-1.5- 0.0	0.9987 ± 0.0016	0.0–1.5	0.9935 ± 0.0016	
Deee	40-45	-2.51.5	1.0002 ± 0.0070	1.5-2.5	1.0111 ± 0.0034	
Reco		-1.5- 0.0	0.9951 ± 0.0012	0.0–1.5	0.9941 ± 0.0012	
	45-50	-2.51.5	1.0202 ± 0.0021	1.5-2.5	1.0170 ± 0.0080	
		-1.5- 0.0	0.9941 ± 0.0014	0.0–1.5	0.9967 ± 0.0013	
	50-200	-2.51.5	1.0287 ± 0.0049	1.5-2.5	1.0421 ± 0.0092	
		-1.5- 0.0	0.9805 ± 0.0130	0.0–1.5	0.9989 ± 0.0018	
		$\sim \sim$	2.11		A	Some
	p_T range (GeV)	η range	<u>EData</u> EMC	η range	<u>€Data</u> €MC	variation
(30-35	-2.51.5	0.9937 ± 0.0073	1.5-2.5	0.9372 ± 0.0074	variation
		-1.5- 0.0	1.0018 ± 0.0009	0.0–1.5	0.9958 ± 0.0039	observed
	35-40	-2.51.5	0.9545 ± 0.0055	1.5-2.5	0.9607 ± 0.0053	in n⊤ n
		-1.5- 0.0	0.9910 ± 0.0024	0.0–1.5	0.9960 ± 0.0025	11 P1, 1
	40-45	-2.51.5	0.9661 ± 0.1567	1.5-2.5	0.9648 ± 0.0024	
ID		-1.5– 0.0	0.9946 ± 0.0019	0.0–1.5	0.9892 ± 0.0877	
	45-50	-2.51.5	0.9672 ± 0.0050	1.5-2.5	0.9729 ± 0.0051	
		-1.5- 0.0	0.9938 ± 0.0773	0.0–1.5	0.9917 ± 0.0022	
	50-200	-2.51.5	0.9836 ± 0.0066	1.5-2.5	0.9813 ± 0.0068	
		-1.5– 0.0	0.9915 ± 0.0030	0.0–1.5	0.9857 ± 0.0030	
			Kalanand Mishra	a, Fermilab		10/28

Electron HLT efficiency: Ele27 in May10 reReco

p_T range (GeV)	η range	ϵ_{Data}	η range	ϵ_{Data}
30–35	-2.51.5	0.96 ± 0.01	1.5-2.5	0.93 ± 0.01
	-1.5-0.0	0.97 ± 0.00	0.0–1.5	0.97 ± 0.00
35-40	-2.51.5	0.97 ± 0.00	1.5-2.5	0.97 ± 0.00
	-1.5-0.0	0.97 ± 0.00	0.0–1.5	0.97 ± 0.00
40-45	-2.51.5	0.97 ± 0.00	1.5-2.5	0.97 ± 0.00
	-1.5-0.0	0.98 ± 0.00	0.0–1.5	0.98 ± 0.00
45-50	-2.51.5	0.97 ± 0.00	1.5-2.5	0.97 ± 0.00
	-1.5-0.0	0.98 ± 0.00	0.0–1.5	0.98 ± 0.00
50-200	-2.51.5	0.97 ± 0.01	1.5-2.5	0.98 ± 0.00
	-1.5-0.0	0.98 ± 0.00	0.0–1.5	0.98 ± 0.00

Almost flat in pt, eta

Electron HLT efficiency: Ele+2j+MHT: ele, MET

p _T range (GeV)	η range	$\epsilon_{\rm Data}$	η range	€ _{Data}
30-35	-2.51.5	0.8742 ± 0.0039	1.5-2.5	0.8519 ± 0.0040
	-1.5- 0.0	0.9711 ± 0.0010	0.0–1.5	0.9690 ± 0.0011
35-40	-2.51.5	0.9630 ± 0.0017	1.5-2.5	0.9623 ± 0.0017
	-1.5- 0.0	0.9775 ± 0.0006	0.0-1.5	0.9757 ± 0.0007
40-45	-2.51.5	0.9720 ± 0.0013	1.5-2.5	0.9699 ± 0.0013
$\langle \rangle$	-1.5-0.0	0.9789 ± 0.0006	0.0–1.5	0.9762 ± 0.0006
45-50	-2.51.5	0.9720 ± 0.0014	1.5-2.5	0.9727 ± 0.0014
	-1.5-0.0	0.9782 ± 0.0007	0.0–1.5	0.9764 ± 0.0007
50-200	-2.51.5	0.9747 ± 0.0017	1.5-2.5	0.9746 ± 0.0016
	/-1.5- 0.0	0.9820 ± 0.0008	0.0–1.5	0.9808 ± 0.0008

Ele leg: Similar to the previous slide (i.e., single ele efficiency)

PF missing \mathbf{H}_T range (GeV)	ϵ_{Data}			
30–35	0.9136 ± 0.0072			
35-40	0.9393 ± 0.0064			
40-45	0.9807 ± 0.0045			
45-50	0.9821 ± 0.0055	MET leg: Not fully		
50-60	0.9933 ± 0.0030	officient up to 60 GeV		
60–70	0.9955 ± 0.0049	enicient up to oo Gev		
70–100	0.9954 ± 0.0037			
Kalanand Mishra, Fermilab				

Electron HLT efficiency: Ele+2j+MHT: jet30 leg

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0090
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0064
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0063
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0088
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0054
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0077
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0047
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0058
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0041
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0066
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0066
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0033
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0064
70-80 -2.41.5 0.9915 ± 0.0044 1.5-2.4 0.9904 ± 0.0	0036
	0046
$-1.5-0.0$ 0.9893 ± 0.0025 $0.0-1.5$ 0.9904 ± 0.0025	0024
80-90 -2.41.5 0.9915 ± 0.0056 1.5-2.4 0.9963 ± 0.0	0047
$-1.5-0.0$ 0.9914 ± 0.0027 0.0-1.5 0.9915 ± 0.0	0027
90-100 $-2.4 -1.5$ 0.9897 \pm 0.0074 1.5-2.4 0.9924 \pm 0.0	0060
1.5-0.0 0.9912 ± 0.0033 0.0-1.5 0.9909 ± 0.0	0032
100-200 $-2.4 - 1.5$ 0.9924 ± 0.0032 $1.5 - 2.4$ 0.9925 ± 0.00000	0032
$-1.5-0.0$ 0.9951 \pm 0.0013 0.0-1.5 0.9953 \pm 0.0	0012

Electron HLT efficiency: Ele+2j+MHT: jet25!30 🎇

p _T range (GeV)	η range	€Data	η range	€Data
30-35	-2.41.5	0.1923 ± 0.0070	1.5-2.4	0.2124 ± 0.0071
	-1.5-0.0	0.1468 ± 0.0043	0.0-1.5	0.1516 ± 0.0043
35-40	-2.41.5	0.0892 ± 0.0055	1.5-2.4	0.1168 ± 0.0061
	-1.5-0.0	0.0792 ± 0.0033	0.0-1.5	0.0885 ± 0.0034
40-45	-2.41.5	0.0374 ± 0.0041	1.5-2.4	0.0368 ± 0.0041
	-1.5-0.0	0.0337 ± 0.0024	0.0 - 1.5	0.0378 ± 0.0025
45-50	-2.41.5	0.0154 ± 0.0031	1.5-2.4	0.0212 ± 0.0035
	-1.5-0.0	0.0139 ± 0.0018	0.0-1.5	0.0146 ± 0.0018
50-55	-2.41.5	0.0061 ± 0.0024	1.5-2.4	0.0053 ± 0.0022
	-1.5-0.0	0.0051 ± 0.0012	0.0-1.5	0.0076 ± 0.0015
55-60	-2.41.5	0.0027 ± 0.0021	1,5-2.4	0.0028 ± 0.0019
	-1.5-0.0	0.0020 ± 0.0009	0.0-1.5	-0.0041 ± 0.0013
6065	-2.41.5	0.0016 ± 0.0020	1,5-2.4	0.0006 ± 0.0016
	-1.5-0.0	0.0018 ± 0.0010	0.0-1.5	0.0014 ± 0.0010
65-70	-2.41.5	0.0008 ± 0.0020	1.5-2.4	0.0000 ± 0.0017
	-1.5-0.0	0.0010 ± 0.0009	0.0-1.5	0.0000 ± 0.0006
70-80	2.41.5	0.0005 ± 0.0012	1.5-2.4	0.0000 ± 0.0011
	-1,5-0,0 /	0.0004 ± 0.0005	0.0 - 1.5	0.0004 ± 0.0005
80-90	-2.41.5	0.0000 ± 0.0016	1.5-2.4	0.0007 ± 0.0017
	-1.5-0.0	0.0003 ± 0.0006	0.0 - 1.5	0.0006 ± 0.0007
90-100	-2.41,5	0.0000 ± 0.0020	1.5-2.4	0.0000 ± 0.0019
	-1.5-0.0	0.0004 ± 0.0008	0.0 - 1.5	0.0000 ± 0.0006
100-200	-2.41.5	0.0000 ± 0.0007	1.5-2.4	0.0000 ± 0.0007
	-1.5- 0.0	0.0001 ± 0.0003	0.0-1.5	0.0001 ± 0.0003

How does efficiency affect my shape?

Muon HLT efficiency: effect on W+jets template

Ele27 May10 reReco: effect on W+jets template

Ele+2j+MHT: effect on W+jets template

Summary

♦I have developed machinery to compute efficiency correction factors as a function of m_{ij} and m_{lvjj} . If this group thinks it would be useful then I can put these in some common place (cvs or svn) so that people can use these to correct their template shapes.

The reco and ID efficiency scale factors, and single lepton trigger efficiency are independent of sample
 -although they need to be computed as "lumi-weighted average".

Trigger efficiency for lepton+2jet+MHT trigger is sample dependent

-Need to derive correction factors separately for each physics process of interest: W+jets, diboson, ttbar, single top, QCD, Z +jets, Higgs, technicolor, Z', WH.