



# Z→ee + jet Analysis with Summer08 FullSim Sample

Robert Harris

Kalanand Mishra

Fermilab

Jet Energy Correction, March 6, 2009

#### p<sub>⊤</sub> spectra of Z, jet, and electron







Scaled to 100 pb<sup>-1</sup> integrated luminosity



#### **Event Selection Summary**

- Lead-jet in the central region:  $|\eta_{Jet}| < 1.3$
- Z & jet back-to-back:  $|\phi_Z \phi_{Jet} \pi| < 0.2$
- p<sub>T</sub> SecondJet / p<sub>T</sub> Z < 0.2</li>
- Electron: super cluster matched to a track, p<sub>T</sub> > 20 GeV/c
- Electron:  $|\eta| < 1.4442 \text{ OR } 1.56 < |\eta| < 2.5$

Changed from pTSecondJet/pTLeadJet. More on this in a later slide.









(Generated – Reconstructed)/Generated Z  $p_T$  distribution as a function of generated  $p_T$  and also as a function of reconstructed  $p_T$ .

The reconstructed  $p_T$  is underestimated by about 1.5 – 1.8 %. This is a slight improvement over the CSA07 sample.

### Z signal purity from Summer08 Z→e+e- sample







- Dielectron invariant mass for e<sup>±</sup> candidates passing our selection criteria.
- Signal purity within  $3\sigma$  of the peak = 96.5 %.

# Jet response in specific reference p<sub>T</sub> bins − I







Kalanand Mishra, Fermilab

# Jet response in specific reference p<sub>T</sub> bins − II





#### Jet response Comparison (when using p<sub>T</sub>jet2/p<sub>T</sub>jet1 < 0.2 cut)





#### Problem with p<sub>T</sub>jet2/p<sub>T</sub>jet1 cut

- In Zee+jet analysis, we have been using cut on p<sub>T</sub><sup>jet2</sup>/p<sub>T</sub><sup>jet1</sup> (due to my oversight).
- The problem with cutting on p<sub>T</sub><sup>jet2</sup>/p<sub>T</sub><sup>jet1</sup> is that it can bias the p<sub>T</sub> of jet1 to fluctuate high, and artificially bias the Z+jet balance to give higher response especially at lower values of p<sub>T</sub>.
- It seems we are seeing the effect of the bias in this plot.
- •Both Zμμ+jet and γ+jet analyses used p<sub>T</sub><sup>2nd</sup>/p<sub>T</sub><sup>Z</sup> cut.

## Jet response Comparison (when using p<sub>T</sub>jet2/p<sub>T</sub>Z <0.2 cut)





Good agreement among the Zee+jet,  $Z\mu\mu$ +jet, and  $\gamma$ +jet response values, when using  $p_T^{jet2}/p_T^Z$  <0.2 cut in the Zee +jet analysis as well.

# Recap of p<sub>T</sub> balance method for abs correction



- Step 1: Bin in p<sub>T</sub><sup>Z</sup>. In each bin record
  - Response =  $p_T^{Jet}$  (uncor.) /  $p_T^Z$
  - p<sub>T</sub><sup>Jet</sup> (uncorrected)
- <u>Step 2:</u> Fit the p<sub>T</sub><sup>Jet</sup> vs. (1/Response) distribution with the functional form:

$$C(p_T) = a_0 + \frac{a_1}{[log(p_T)]^{a_2} + a_3}$$

 $C(p_T)$  is the required absolute correction.

#### Abs correction for Summer08 MC statistics







## Absolute correction & response for 100 pb<sup>-1</sup>







# Comparison of Corr. for different jet algorithms





Error bars correspond to the MC statistics.

#### Status & summary



- ✓ First draft of the Z→e<sup>+</sup>e<sup>-</sup> + jet analysis note (with CSA07 data) uploaded. (CMS AN-2009/004)
- ✓ Update to Summer08 sample ongoing :
  - ✓ Absolute correction from Summer08 Z→e<sup>+</sup>e<sup>-</sup> + jet sample obtained.
  - √ Study of systematic uncertainties underway.
  - In the process of repeating all the studies done with CSA07 data.
  - Work underway to combine corrections from Zee+jet, Zμμ+jet, and γ+jet.
- ✓ Plan to update the analysis note with the new Summer08 plots and results by the end of this month.



#### Bias in the electron p<sub>T</sub> reconstruction





Plot (Generated − Reconstructed)/Generated p<sub>T</sub> distribution for the electron.

Notice that a cut of  $p_T > 20$  GeV/c is applied to the reconstructed electron  $p_T$ .

The reconstructed  $p_T$  is biased differently in  $e^-$  and  $e^+$ .

## Uncertainty in abs correction for 100 pb<sup>-1</sup>



