Z→ee + jet Analysis with Summer08 FullSim Sample Robert Harris Kalanand Mishra Fermilab Jet Energy Correction, March 6, 2009 #### p_⊤ spectra of Z, jet, and electron Scaled to 100 pb⁻¹ integrated luminosity #### **Event Selection Summary** - Lead-jet in the central region: $|\eta_{Jet}| < 1.3$ - Z & jet back-to-back: $|\phi_Z \phi_{Jet} \pi| < 0.2$ - p_T SecondJet / p_T Z < 0.2 - Electron: super cluster matched to a track, p_T > 20 GeV/c - Electron: $|\eta| < 1.4442 \text{ OR } 1.56 < |\eta| < 2.5$ Changed from pTSecondJet/pTLeadJet. More on this in a later slide. (Generated – Reconstructed)/Generated Z p_T distribution as a function of generated p_T and also as a function of reconstructed p_T . The reconstructed p_T is underestimated by about 1.5 – 1.8 %. This is a slight improvement over the CSA07 sample. ### Z signal purity from Summer08 Z→e+e- sample - Dielectron invariant mass for e[±] candidates passing our selection criteria. - Signal purity within 3σ of the peak = 96.5 %. # Jet response in specific reference p_T bins − I Kalanand Mishra, Fermilab # Jet response in specific reference p_T bins − II #### Jet response Comparison (when using p_Tjet2/p_Tjet1 < 0.2 cut) #### Problem with p_Tjet2/p_Tjet1 cut - In Zee+jet analysis, we have been using cut on p_T^{jet2}/p_T^{jet1} (due to my oversight). - The problem with cutting on p_T^{jet2}/p_T^{jet1} is that it can bias the p_T of jet1 to fluctuate high, and artificially bias the Z+jet balance to give higher response especially at lower values of p_T. - It seems we are seeing the effect of the bias in this plot. - •Both Zμμ+jet and γ+jet analyses used p_T^{2nd}/p_T^Z cut. ## Jet response Comparison (when using p_Tjet2/p_TZ <0.2 cut) Good agreement among the Zee+jet, $Z\mu\mu$ +jet, and γ +jet response values, when using p_T^{jet2}/p_T^Z <0.2 cut in the Zee +jet analysis as well. # Recap of p_T balance method for abs correction - Step 1: Bin in p_T^Z. In each bin record - Response = p_T^{Jet} (uncor.) / p_T^Z - p_T^{Jet} (uncorrected) - <u>Step 2:</u> Fit the p_T^{Jet} vs. (1/Response) distribution with the functional form: $$C(p_T) = a_0 + \frac{a_1}{[log(p_T)]^{a_2} + a_3}$$ $C(p_T)$ is the required absolute correction. #### Abs correction for Summer08 MC statistics ## Absolute correction & response for 100 pb⁻¹ # Comparison of Corr. for different jet algorithms Error bars correspond to the MC statistics. #### Status & summary - ✓ First draft of the Z→e⁺e⁻ + jet analysis note (with CSA07 data) uploaded. (CMS AN-2009/004) - ✓ Update to Summer08 sample ongoing : - ✓ Absolute correction from Summer08 Z→e⁺e⁻ + jet sample obtained. - √ Study of systematic uncertainties underway. - In the process of repeating all the studies done with CSA07 data. - Work underway to combine corrections from Zee+jet, Zμμ+jet, and γ+jet. - ✓ Plan to update the analysis note with the new Summer08 plots and results by the end of this month. #### Bias in the electron p_T reconstruction Plot (Generated − Reconstructed)/Generated p_T distribution for the electron. Notice that a cut of $p_T > 20$ GeV/c is applied to the reconstructed electron p_T . The reconstructed p_T is biased differently in e^- and e^+ . ## Uncertainty in abs correction for 100 pb⁻¹