

Skim for electroweak-electron group

Kalanand Mishra

Fermilab

with inputs from Jeffrey Berryhill (Fermilab) & Markus Klute (MIT)

Electroweak electron meeting (August 14, 2009)

CMS physics primary dataset definition & rates

Outlined in Joe Incandela's talk (CRB meeting: June 18, 2009) http://indico.cern.ch/contributionDisplay.py?contribld=8&confld=55408

	 9 PD + MinBias + BeamHalo&BSC 			
Jet triggers (Ewk-electron background)	Jet15_DiJet15_L1Jet6_FwdJet	18.60] 36.4 Hz	
	Jet30_DiJet30_MultiJet	17.81	30.4 112	
	Met_HT_BTag_HSCP	7.20		
	MuMonitor	13.00		
	Mu	25.34		
	EG_Monitor	24.47		
e/γ triggers	EG	23.19	23.2 Hz	
(Ewk-e signal)	DoublePhoton5_Res	13.35		
(Ewit o olgilal)	Tau	20.17		
	MinB	13.54		
	BH_Forward	7.48		
	TOTAL	137 + 47Hz	59.6 Hz	
)			
	These numbers are for rough estimations only. They keep changing !			

Ewk-electron data populates 2 PDs that amounts to about 44% of all data.

Ele	Gamma				23.19
	OpenHLT_Ele10_LW_L1R	L1_SingleEG5	1	1	17.3
W	OpenHLT_Ele10_LW_EleId_L1R	L1_SingleEG5	1	1	3.26
	OpenHLT Ele15 LW L1R	L1 SingleEG8	1	1	5.09
Z	OpenHLT Ele15 SC10 LW L1R	L1_SingleEG8	1	1	2.33
	OpenHLT_Ele20_LW_L1R	L1_SingleEG8	1	1	2.09
	OpenHLT DoubleEle5 SW L1R	L1 DoubleEG5	1	1	0.71
bkg	OpenHLT Photon15 L1R	L1 SingleEG8	1	1	10.6
	OpenHLT_Photon15_TrackIso_L*	1 L1_SingleEG8	1	1	2.48
	OpenHLT_Photon15_LooseEcalls	siL1_SingleEG8	1	1	8.51
	OpenHLT_Photon20_L1R	L1_SingleEG8	1	1	3.65
	OpenHLT_Photon30_L1R		1	1	0.83
	OpenHLT_DoublePhoton10_L1R	L1_DoubleEG5	1	1	2.32
Jets					22.97
bkg	OpenHLT_Jet30U	L1_SingleJet20	1	1	17.71
29	OpenHLT_Jet50U	L1_SingleJet30	1	1	3.01
	OpenHLT_DiJetAve30	L1_SingleJet20	1	1	8.49
	OpenHLT_QuadJet15U	L1_QuadJet6	1	1	0.7
	OpenHLT_FwdJet20U	L1_lsoEG10_Jet6_ForJet6	1	1	5.62

- •The primary datasets are large!
- •A PAG/POG may need small part of PDs → need for centralized skims.
- •Standard OpenHLT codes and samples to be used for central skims.
- •One strategy is to filter events by trigger bit and slim the event content.

Proposed specifications for EWK-e skim(s)

- ◆The EWK skims for W and Z will be of use to the Egamma, JetMET, TOP, SUSY, and Higgs groups.
- ◆This has some impact on max. rates and thresholds.
- ◆Can keep relevant RECO+AOD as event content (need to finalize!).
- ◆We should try to design central skims now, group skims to be implemented later (for example by using higher thresholds)
- ◆A proposal for central skims could look like the following (initial /low lumi case).
- •W→ev signal: PD=EleGamma; Trigger=Ele10_SW_elD; skim definition= trigger+loose id e P_T >10 GeV (can be higher, but 10 GeV make it useful for other groups).
- •Z→ ee signal: PD=EleGamma; Trigger=Ele15_SW; skim definition= trigger+ e P_T >15 GeV
- •W \rightarrow ev background: PD=Jets; Trigger=Jet30; skim definition= trigger+loose e P_T > 10 GeV (should not be lower than the one for the signal skim).
- •W→ev background: PD=EleGamma; Trigger=Photon15; skim definition= trigger+loose e P_T
- > 10 GeV (should not be lower than the one for the signal skim).
- •Z→ee background: can use the W signal and background skims.

Note: For background samples, can run over secondary datasets.

Logistics and code

- ◆Have used official HLT machinery for this purpose
- ◆Tested extensively an ED filter to just filter events using trigger bit
- ◆Tested extensively an ED filter to filter + slim event content in CRAFT data and Summer09 samples

Simple code:
Developed for
filtering electrontriggered events

```
import FWCore.ParameterSet.Config as cms
process = cms.Process("SKIM")
process.load('FWCore.MessageService.MessageLogger_cfi')
process.load('JetMETCorrections.Configuration.jecHLTFilters.cfi')
########### Set the number of events ############
process.maxEvents = cms.untracked.PSet(
   input = cms.untracked.int32(-1)
             Define the source file ###############
process.source = cms.Source("PoolSource";
   fileNames = cms.untracked.vstring() )
########## Path
                       process.skimPath = cms.Path(process.HLTElectrons)
             process.out = cms.OutputModule("PoolOutputModule",
   SelectEvents = cms.untracked.PSet(SelectEvents = cms.vstring('skimPath')),
   fileName = cms.untracked.string('SkimElectrons.root')
process.p = cms.EndPath(process.out)
process.MessageLogger.cerr.FwkReport.reportEvery = 100
```

Proposed event content

CaloTowersSorted_towerMaker__RECO. KeventAuxiliary MedmTriggerResults_TriggerResults_HLT. 🖊 edm Trigger Results_Trigger Results__HLT8E29. 🖊 edm Trigger Results_Trigger Results__RECO. 🖊 edm Trigger Results_Trigger Results__SKIM. floatedmValueMap_eidLoose__RECO. X floatedmValueMap_eidRobustHighEnergy__RECO. MfloatedmValueMap_eidRobustLoose__RECO. 📈 floatedm Value Map_eid Robust Tight __RECO. floatedmValueMap_eidTight__RECO. recoBeamSpot_offlineBeamSpot__RECO. MecoCalo ClustersTo Onereco Cluster Shapes Association hybrid Super Clusters hybrid Shape Assoc RECO. Pareco Calo Clusters_hybridSuper Clusters_hybridBarrelBasic Clusters_RECO. PrecoCaloJets_antikt5CaloJets__RECO. MrecoCaloJets_iterativeCone5CaloJets__RECO. PrecoCaloJets_kt4CaloJets_RECO. Preco Calo Jets kt6 Calo Jets RECO. PrecoCaloJets_sisCone5CaloJets_RECO. PrecoCaloJets_sisCone7CaloJets_RECO. PrecoCaloMETs_metHO__RECO. KarecoCaloMETs_metNoHFHO_RECO. recoCaloMETs_metNoHF__RECO. recoCaloMETs_met__RECO. MrecoGsfElectrons_gsfElectrons__RECO. KrecoPFCandidates_particleFlow__RECO. Particle Flow_electrons_RECO. PrecoPFJets antikt5PFJets RECO. MrecoPFJets_iterativeCone5PFJets__RECO. recoPFJets_kt4PFJets__RECO. PrecoPFJets kt6PFJets RECO. PrecoPFJets sisCone5PFJets RECO. PrecoPFJets_sisCone7PFJets_RECO. MecoPreshowerClusters_multi5x5SuperClustersWithPreshower_preshowerXClusters_RECO. Properties of the propertie MrecoSuperClusters correctedHybridSuperClusters RECD. KrecoSuperClusters_correctedMulti5x5SuperClustersWithPreshower__RECO. MrecoSuper Clusters_hybridSuper Clusters__RECO. MrecoSuper Clusters_multi5x5Super ClustersWithPreshower__RECO. MecoSuper Clusters_multi5x5Super Clusters_multi5x5EndcapSuper Clusters_RECO. MrecoVertexs_offlinePrimaryVerticesWithBS__RECO. //recoVertexs_offlinePrimaryVertices__RECO. triggerTriggerEvent_hltTriggerSummaryAOD__HLT. triggerTriggerEvent_hltTriggerSummaryAOD__HLT8E29.

Summary: Keep the following

- ◆Trigger objects, beam spot, primary vertex information
- ◆Electron: gsfElectrons, id / isolation maps,
- ◆Super cluster: EB+EE super clusters, pre-shower SCs, corrected SCs
- ◆Jets: all jet algorithms, MET: CaloMET
- ◆Particle flow objects

Typical event size goes down from ~1MB to ~30 kB → a factor of 30 improvement !!!

1 snow mass year = 10⁷ second [assumes 30% duty cycle] Rate of our PD (signal+background) = 60 Hz Typical event size in PD = 1 MB (say)

For 1 year of continuous CMS running, we can expect the disk storage requirement to be $\approx 10^7 \times 60 \times 1 \text{ MB} \approx 600 \text{ TB}$

By reducing the data size by a factor of 20 (just by filtering on trigger bit & slimming the event content), we will need to store ≈ 30 TB at T2/T3 sites.

We can further reduce this data size by applying kinematic thresholds for our analysis skims.

Bottom line: Even with minimal skim (filtering+slimming) we should be fine.