

Kalanand Mishra

University of Cincinnati
BaBar collaboration

## Weak interaction of quarks in SM



Left handed quarks in doublets $q_{L}^{i}=\binom{u_{L}^{i}}{d_{L}^{i}}$
Right handed quarks in singlets $\Rightarrow$ do not couple to W

- The electroweak coupling strength of W to left-handed quarks is described by Cabibbo-Kobayashi-Maskawa matrix

$$
\begin{gathered}
-\mathcal{L}_{W^{ \pm}}=\frac{g}{\sqrt{2}} \overline{u_{L i}} \gamma^{\mu}\left(V_{\mathrm{CKM}}\right)_{i j} d_{L j} W_{\mu}^{+}+\text {h.c. } \\
W_{i j}^{+} \\
\bar{V}_{i}=u, c, \bar{d}, \bar{s}, \bar{b}
\end{gathered}
$$

- $3 \times 3$ unitary matrix $==>4$ parameters

$$
V=\left(\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)=\left(\begin{array}{cc}
\square & - \\
\mathbf{-}
\end{array}\right) \begin{aligned}
& \text { relative } \\
& \text { ofogitude } \\
& \text { eflements }
\end{aligned}
$$

## The CKM Matrix

- An irremovable complex phase in $\mathrm{V}_{\text {CKM }}$ is the origin of CP violation in the SM

- In the Wolfenstein parameterization:

$$
V=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i 7) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

## The Unitarity Triangle

- V is unitary: $\mathrm{V}^{+}=1=V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0$

$>$ Expect $\gamma$ to be $\sim(60 \pm 10)^{\circ}$, if the Standard Model is consistent.
$>$ But need to measure it directly, need redundant measurements ....
$>$ Several ways to measure $\gamma$, no single one of them is "silver bullet"!


## BaBar: B and charm Factory



## Extraction of $\gamma$ with $\mathrm{B} \rightarrow \mathrm{D}^{0} \mathrm{~K}$



## A Simple Interference Algebra

Amplitude $1=\mathrm{A} \mathrm{e}^{\mathrm{i} \gamma}$
Amplitude $2=B e^{\text {is }}$
Total amplitude $=\mathrm{Ae}^{\mathrm{i} \gamma}+\mathrm{Be}^{i \delta}$

Decay Rate $=A^{2}+B^{2}+2 A B \cos (\delta-\gamma)$
Decay Rate of CP-conjugate decay

$$
=A^{2}+B^{2}+2 A B \cos (\delta+\gamma)
$$

If 2 parameters are known (A/B and $\delta$ ), use the 2 equations to solve for $B$ and $\gamma$.
$B \rightarrow D K$, through a slightly more complicated analysis, allows you to measure $\gamma$ when $\delta$ is not known.

## Evolution of Methods on $\gamma$

- Gronau, Landon, and Wyler (GLW) Phys. Lett. B 265, 172 (1991)
- This was the original $B \rightarrow D K$ paper. Reconstruct $D$ in a CP eigenstate.
- Additional measurements are needed to determine them all: $r_{\mathrm{B}}, \delta, \gamma$.


## Main Drawback:

$$
B F(B \rightarrow D K) \sim 10^{-4}, B F\left(D \rightarrow f_{C P}\right) \sim 10^{-2}
$$

Small... $\Rightarrow$ strongly statistics limited

- Atwood, Dunietz, and Soni (ADS), Phys. Rev. Lett. 78, 3257 (1997)
- Noted the sizable interference between the DCS and CF decays of D, and proposed to use them, to realize the interference.
- Method can't be used standalone either, since there is only one 2-body DCS mode, $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{+} \pi^{-}$, while at least 2 modes are needed. Need additional input of strong phase difference in $D$ decays.

No significant signal with current data

- Giri, Grossman, Soffer, Zupan (GGSZ) Phys. Rev. D68, 054018 (2003)
- Outlines the method for using multi-body $D$ decays with model-dependent and -independent analysis

Will elaborate on this later

- BaBar, hep-ex/0507101 and Belle, hep-ex/0504013 (2005)
- The experimental measurements of $\gamma$ using $B \rightarrow D K, D \rightarrow K_{s} \pi^{+} \pi^{-}$
- Bondar, A. Poluektov, ph/0510246 (2005)
- MC study of the model-independent (binned Dalitz plot) measurement of $\gamma$


## Discrete Ambiguities

- The observables are $\cos (\delta+\gamma)$ and $\cos (\delta-\gamma)$, which are invariant under

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{ex}}: \delta \leftrightarrow \gamma & \\
\mathrm{S}_{ \pm}: \delta \rightarrow-\delta, & \gamma \rightarrow-\gamma \\
\mathrm{S}_{\pi}: \delta \rightarrow \delta+\pi, \quad \gamma \rightarrow \gamma+\pi
\end{array}
$$

- If $\delta_{f}$ and $\delta_{f}$, are different enough, $S_{e x}$ is resolved, since you can't simultaneously satisfy both $\delta_{f} \leftrightarrow \gamma$ and $\delta_{f}, \leftrightarrow \gamma$

[^0]
## 2-body vs Multi-body D ${ }^{0}$ Final States

## Advantages of multi-body final states:

- Effectively, provide many final states, due to the variation of $r_{f}$ and $\delta_{f}$. This helps to resolve ambiguities down to an irreducible 2-fold ambiguity :)
- Add statistics - access to modes for which the 2-body final-state technique for measuring $\gamma$ is not applicable :)


## Disadvantages:

- More complicated analysis :(
- New systematic errors (how well do we understand the D final-state phasespace distribution?) unless using model-independent analysis approach :(


## Overall:

- A-priori, both kinds of states are approximately equally useful in measuring $\gamma$. Measurement is statistically limited, need all the modes we can get. In practice, some modes will turn out to be more useful than others.


## Analysis Steps for $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi-\pi^{+} \pi^{0}} \mathrm{~K}^{ \pm}$

Step 1: Obtain $D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz Plot parameterization using $\mathrm{D}^{*+} \rightarrow \mathrm{D}^{0} \pi^{+}$(and c.c) sample

Step 2: Fit $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {ллло }} \mathrm{K}^{-}$(and c.c) sample to obtain signal yield and branching-ratio asymmetry

Step 3: Fit for CP parameters using results of Steps 1 and 2 on $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\text {лллा }} \mathrm{K}^{-}$sample

## Step 1 3-Particle Phase Space

## - 2 Observables

From four vectors
Conservation laws
Final state particle masses-3

Free rotation in decay plane -3


- Usual choice

Invariant mass squared m² ${ }_{12}$
Invariant mass squared $\mathrm{m}^{2}{ }_{13}$


$$
\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}=\left\{\pi^{+}, \pi^{0}, \pi-\right\}
$$

- Dalitz plot provides info on angular distr.
- Also about dynamical amplitudes involved.
- Flat if no dynamics involved.

- Dalitz applied this method first to $\mathrm{K}_{\mathrm{L}}$-decays
- To resolve t/日 puzzle with only few events
- goal was to determine spin and parity
- And he never called them Dalitz plots !


## Isobar Model Formalism

three-body decay $D \rightarrow A B C$ decaying through an $r=[A B]$ resonance

$\begin{aligned} & \text { D decay three-body amplitude } \mathcal{A}_{D}\left(s_{12}, s_{13}\right)=a_{0} e^{i \delta_{0}}+\sum_{r} a_{r} e^{i \delta r} \mathcal{A}_{r}\left(s_{12}, s_{13}\right) \\ & \mathrm{a}_{0}, \delta_{0}, \mathrm{a}_{\mathrm{r}}, \delta_{\mathrm{r}} \text { : Free parameters of fit } \longrightarrow \text { NR term(direct 3 body decay) }\end{aligned}$
$\mathcal{A}_{r}\left(s_{12}, S_{13}\right)=F_{D}^{J} F_{r}^{J} \times M_{r}^{J} \times B W_{r}^{J}$

$$
\bigsqcup_{r} B W_{r}^{J}(s)=\left\{\begin{array}{l}
\frac{1}{M_{r}^{2}-s-i M_{r} \Gamma_{r}(\sqrt{s})}  \tag{0}\\
\frac{1}{M_{r}^{2}-s-i\left(\rho_{1} g_{1}^{2}+\rho_{2} g_{2}^{2}\right)}
\end{array}\right.
$$

$\rightarrow$ Angular distribution
$\rightarrow D$ and $r$ Blatt-Weisskopf form factors

## Step $1 \quad \mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$ Dalitz Plot Amplitudes

Interference between three types of singly Cabibbo-suppressed amplitudes


$$
\begin{aligned}
\mathcal{A}\left[D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}\right] & \equiv f_{D^{0}}\left(m_{\pi+\pi^{0}}^{2}, m_{\pi^{-} \pi^{0}}^{2}\right) \\
\overline{\mathcal{A}}\left[\bar{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right] & \equiv f_{D^{0}}\left(m_{\pi^{-} \pi^{0}}^{2}, m_{\pi^{+} \pi^{0}}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}_{\pi^{+} \pi^{0}}+\mathrm{m}_{\pi^{-} \pi^{0}}+\mathrm{m}_{\pi^{+} \pi^{-}}= \\
& \mathrm{m}_{\pi^{+}}^{2}+\mathrm{m}_{\pi^{-}}^{2}+\mathrm{m}_{\pi^{2}}{ }^{2}+\mathrm{m}_{\mathrm{D}^{2}}
\end{aligned}
$$

PDF for signal events $=|\mathrm{f}|^{2}$
Assumes no D-mixing, no CP violation in $D$ decays!

## Step $1 \quad D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$ Event Reconstruction

## $\mathbf{D}^{0} \rightarrow \pi \pi^{+} \pi^{0}$ Reconstruction

$>\pi^{-}$and $\pi^{+}$tracks are fit to a vertex
$>$ Mass of $\pi^{0}$ candidate is constrained to $\mathrm{m}_{\pi 0}$ at $\pi^{-} \pi^{+}$vertex
$>\mathrm{P}_{\mathrm{CM}}\left(\mathrm{D}^{0}\right)>2.77 \mathrm{GeV} / \mathrm{c}$

## Background Sources

$>$ Charged track combinatoric
> Mis-reconstructed $\pi^{0}$
$>$ Real $\mathrm{D}^{0}$, fake $\pi_{\mathrm{s}}$
$>$ K $\pi \pi^{0}$ reflection in sideband

D* Reconstruction
$>\mathrm{D}^{*+}$ candidate is made by fitting the $\mathrm{D}^{0}$ and $\pi_{\mathrm{s}}{ }^{+}$to a vertex constrained in $x$ and $y$ to the measured beam-spot.
$>\left|m_{D^{*}}-\mathrm{m}_{\mathrm{D} 0}-145.5\right|<0.6$
$\mathrm{MeV} / \mathrm{c}^{2}$
$>$ Vertex $\chi^{2}$ probability $>0.01$
$>$ Choose the best candidate per event with the smallest $\chi^{2}$ for the decay chain
 (multiplicity = 1.03).

Step 1 Dalitz Plot Analysis of $\mathrm{D}^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$
Motivation: CKM angle $\gamma$ using $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}\left[\rightarrow \pi^{-} \pi^{+} \pi^{0}\right] \mathrm{K}^{ \pm}$

- Three $I=1$ particles in the final state
- Gives rise to a rich interference structure
- The three $\rho$ regions are clearly enhanced in the DP, and $\rho-\rho$ destructive interference is evident



The 3 destructively interfering $\rho \pi$ amplitudes suggest an $I=0, \Delta \mathrm{I}$ $=1 / 2$ dominated final state.
C. Zemach, Phys. Rev. 133, B1201 (1964).

## Step $1 \quad D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$ Dalitz Plot Fit Results

| $\rho^{+}: 68 \%$ | Small contributions from |
| :--- | :--- |
| $\rho^{-}: 35 \%$ | higher $\rho, f_{0}, f$ |
| $\rho_{2}$ and $\sigma$ states |  |


| State | Amplitude $a_{r}$ | Phase $\phi_{r}$ | Fraction $f_{r}(\%)$ |
| :--- | ---: | ---: | ---: |
| $\rho^{+}(770)$ | 1 | 0 | $67.8 \pm 0.0 \pm 0.2$ |
| $\rho^{0}(770)$ | $0.588 \pm 0.006 \pm 0.001$ | $16.2 \pm 0.6 \pm 0.3$ | $26.2 \pm 0.5 \pm 0.4$ |
| $\rho^{-}(770)$ | $0.714 \pm 0.008 \pm 0.003$ | $-2.0 \pm 0.6 \pm 0.5$ | $34.6 \pm 0.8 \pm 0.1$ |
| $\rho^{+}(1450)$ | $0.21 \pm 0.06 \pm 0.10$ | $-146 \pm 18 \pm 8$ | $0.11 \pm 0.07 \pm 0.06$ |
| $\rho^{0}(1450)$ | $0.33 \pm 0.06 \pm 0.04$ | $10 \pm 8 \pm 6$ | $0.30 \pm 0.11 \pm 0.07$ |
| $\rho^{-}(1450)$ | $0.82 \pm 0.05 \pm 0.04$ | $16 \pm 3 \pm 3$ | $1.79 \pm 0.22 \pm 0.12$ |
| $\rho^{+}(1700)$ | $2.25 \pm 0.18 \pm 0.14$ | $-17 \pm 2 \pm 2$ | $4.1 \pm 0.7 \pm 0.7$ |
| $\rho^{0}(1700)$ | $2.51 \pm 0.15 \pm 0.13$ | $-17 \pm 2 \pm 2$ | $5.0 \pm 0.6 \pm 0.9$ |
| $\rho^{-}(1700)$ | $2.00 \pm 0.11 \pm 0.07$ | $-50 \pm 3 \pm 3$ | $3.2 \pm 0.4 \pm 0.6$ |
| $f_{0}(980)$ | $0.052 \pm 0.004 \pm 0.006$ | $-59 \pm 5 \pm 3$ | $0.25 \pm 0.04 \pm 0.04$ |
| $f_{0}(1370)$ | $0.22 \pm 0.03 \pm 0.03$ | $156 \pm 9 \pm 6$ | $0.37 \pm 0.11 \pm 0.09$ |
| $f_{0}(1500)$ | $0.20 \pm 0.02 \pm 0.02$ | $12 \pm 9 \pm 4$ | $0.39 \pm 0.08 \pm 0.07$ |
| $f_{0}(1710)$ | $0.39 \pm 0.05 \pm 0.06$ | $51 \pm 8 \pm 7$ | $0.31 \pm 0.07 \pm 0.08$ |
| $f_{2}(1270)$ | $0.30 \pm 0.01 \pm 0.06$ | $-171 \pm 3 \pm 2$ | $1.32 \pm 0.08 \pm 0.08$ |
| $\sigma(400,600)$ | $0.24 \pm 0.02 \pm 0.04$ | $8 \pm 4 \pm 3$ | $0.82 \pm 0.10 \pm 0.10$ |
| Non-Res | $0.57 \pm 0.07 \pm 0.08$ | $-11 \pm 4 \pm 2$ | $0.84 \pm 0.21 \pm 0.12$ |

## hep-ex/0703037

## Systematic errors:

- $\sigma$ and $\rho(1700)$ parameters
- reconstruction \& PID eff
- Form factor variation
- Flavor mistags

The distribution is marked by 3 destructively interfering $\rho \pi$ amplitudes, suggesting an $I=0, \Delta \mathrm{I}=$ $1 / 2$ dominated final state. C. Zemach, Phys. Rev. 133, B1201 (1964).

## $D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{0}$ Dalitz Plot Fit Projections





Excellent agreement between data \& fit.

## 

## Based on BR and asymmetry analysis Phys. Rev. D72, 071102 (2005)

- $5.272<\mathrm{m}_{\mathrm{ES}}<5.3 \mathrm{GeV}$ (Avoids DP-m $\mathrm{m}_{\mathrm{ES}}$ correlations in bkg)
- $1.83<m_{D}<1.895 \mathrm{GeV}$ (Avoids DP- $\mathrm{m}_{\mathrm{D}}$ correlations in bkg)
- Kaon, pion identification
- $\mathrm{K}_{\mathrm{S}} \rightarrow \pi \pi$ veto $\left(\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{S}} \pi^{0}\right.$ is a CF decay unrelated to GGSZ method)
- $q>0.1 \quad$ (continuum NN)
- $\quad d>0.25 \quad$ (fake $\mathrm{D}^{0} \mathrm{NN}$ )
- $\varepsilon=11.4 \%$ (efficiency)




## Step 2 Event Types in $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi^{-} \pi^{+} \pi^{0}} \mathrm{~K}^{ \pm}$

1. $D K_{D}$ : Correctly reconstructed signal ("signal")
2. $\mathrm{DK}_{\text {bgd }}$ : Mis-reconstructed signal events
3. $D \pi_{\mathrm{D}}$ : Correctly-reconstructed $\mathrm{D} \pi$ with $\pi$ misidentified as $K$
4. $D \pi_{\text {badD }}$ : $D \pi$ events with a fake $D$ candidate. $K$ candidate is usually a true kaon picked at random from the event
5. $D K X: B \rightarrow D K$ with $D \rightarrow$ non- $\pi \pi \pi^{0}$. The $K$ is good
6. $D \pi X: B \rightarrow D \pi / \rho$ with $D \rightarrow$ non- $\pi \pi \pi^{0}$. $K$ candidate is usually a true kaon picked at random from the event
7. $\mathrm{BBC}_{\mathrm{D}}$ : Combinatoric BB events with a good D candidate
8. $\quad \mathrm{BBC}_{\text {badD }}$ : Combinatoric BB events with a fake D candidate
9. $q_{\mathrm{D}}$ : Continuum with a good D candidate
10. $\mathrm{qq}_{\text {badD }}$ : continuum with a fake D candidate

## BR \& Asymmetry for $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi^{-} \pi^{+} \pi^{0}} \mathrm{~K}^{ \pm}$

Fit $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\pi \pi \pi 0_{0}} \mathrm{~K}^{-}$sample with $\Delta \mathrm{E}, \mathrm{q}, \mathrm{d}$ Obtain signal yield \& asymmetry

$\Delta$ E PDFs are Gaussian and $2^{\text {nd }}$-order polynomial:



$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}_{\text {ллл0 }} \mathrm{K}^{-}\right)= \\
& (4.6 \pm 0.8 \pm 0.7) \times 10^{-6} \\
& \mathrm{~A}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}_{\text {ллл0 }} \mathrm{K}^{-}\right)= \\
& -0.02 \pm 0.15 \pm 0.03
\end{aligned}
$$

## Step 3 Extraction of $\gamma$ : Basic Idea



Based on GGSZ method of PRD68, 054018, so far used only with $D \rightarrow K_{S} \pi^{+} \pi^{-}$

## Step 3 Add more Information to the Likelihood

- The Dalitz plot shape $\left|A^{ \pm}\left(s^{+}, s^{-}\right)\right|^{2}$ depends on the CP parameters $r_{B} \mathrm{e}^{\mathrm{i}(\delta \pm \gamma)}=\mathrm{x}_{ \pm}+\mathrm{y}_{ \pm}$
- Previous Dalitz analyses, with $\mathrm{K}_{S} \pi^{+} \pi^{-}$, used only this signature
- But the branching fractions $=\int\left|A^{ \pm}\left(s^{+}, s^{-}\right)\right|^{2}$ are also sensitive to the CP parameters
- Using both the shape and the absolute rates gives higher sensitivity
- It turns out that in this mode, the BRs give a higher sensitivity
- Don't know how it is in $\mathrm{K}_{S} \pi^{+} \pi^{-}-$need to check. If the same is true there, expect significant improvement in $\mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}$sensitivity to $\gamma$


## Step 3 Combined behavior $L=L_{D P}+L_{B A}$



- Highest sensitivity
- But correlated contours due to polar symmetry of $\mathrm{L}_{\mathrm{BA}}$
- Can't quote sensible errors
- Switch to polar coordinates


## $\operatorname{Step} 3^{3}$ Polar coordinates

$$
\begin{gathered}
\rho_{ \pm} \equiv \sqrt{\left(x_{ \pm}-x^{0}\right)^{2}+y_{ \pm}^{2}} \quad \theta_{ \pm} \equiv \tan ^{-1}\left(\frac{y_{ \pm}}{x_{ \pm}-x^{0}}\right) \\
\downarrow \\
x^{0}=\int \mathrm{f}_{\mathrm{D}}\left(\mathrm{~s}^{+}, \mathrm{s}^{-}\right) * \mathrm{f}_{\mathrm{D}}\left(\mathrm{~s}^{-}, \mathrm{s}^{+}\right) \mathrm{ds}^{-} \mathrm{ds}^{+}=0.85
\end{gathered}
$$

$$
\rho_{ \pm}=x^{0} \text { and } \theta=180^{\circ} \text { for } \mathrm{r}_{\mathrm{B}}=0 \text { (no CP violation) }
$$





## Step 3 <br> Result with $344 \mathrm{M} \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{B} \overline{\mathrm{B}}$ Events

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{B}} \mathrm{e}^{\mathrm{i}(\delta \pm \gamma)}=\mathrm{x}_{ \pm}+\mathrm{y}_{ \pm} \\
& \rho_{ \pm} \equiv \sqrt{\left(x_{ \pm}-x^{0}\right)^{2}+y_{ \pm}^{2}} \begin{array}{l}
\downarrow x^{0}=0.85
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \rho^{-}=0.72 \pm 0.11 \pm 0.06 ; \\
& \theta^{-}=(173 \pm 42 \pm 16)^{\circ} \\
& \rho^{+}=0.75 \pm 0.11 \pm 0.06 ; \\
& \theta^{+}=(147 \pm 23 \pm 11)^{\circ}
\end{aligned}
$$

$\theta_{ \pm} \equiv \tan ^{-1}\left(\frac{y_{ \pm}}{x_{ \pm}-x^{0}}\right)$
However, not trivial to directly determine $\gamma$

- First measurement of CP-violating quantities in $\mathrm{B} \rightarrow \mathrm{D}_{\text {лллт }} \mathrm{K}$
- First combined use of DP distribution and absolute BR to extract CP parameters.
- $\sigma_{\theta}$ is too large for a meaningful extraction of $\gamma$ from this analysis alone
- $\sigma_{\rho}$ is small enough to contribute significantly to overall fits for $\gamma$


$$
\rho=0.85, \theta=180^{\circ}
$$

From ( $\rho_{ \pm}, \theta_{ \pm}$) to ( $\left.r_{\mathrm{B}}, \delta, \gamma\right)$
Use frequentist method to extract $\gamma, r_{B}, \delta$ from ( $\rho_{ \pm}, \theta_{ \pm}$)
(3dim confidence intervals projections)


$1 \sigma, 2 \sigma$, and $3 \sigma$ regions are defined as containing the three-dimensional significance, $\alpha$, smaller than 19.9 \%, 73.9 \%, and 97.1 \%, respectively.

## ${ }^{\operatorname{Step} 3}$ Constraints on ( $\left.\mathrm{r}_{\mathrm{B}}, \delta, \gamma\right)$

$1 \sigma$ bounds on the physical parameters, including both stat. and syst. errors

$$
\begin{array}{ll}
\begin{array}{l}
\text { First direct lower } \\
\text { bound on } r_{B}
\end{array} & 0.06<r_{B}<0.78 \\
& -30^{\circ}<\gamma<76^{\circ} \\
& -27^{\circ}<\theta<78^{\circ}
\end{array}
$$

hep-ex / 0703037
accepted for publication in PRL

These bounds come from the results of this analysis alone. Sensitivity to $r_{B} \gamma_{r}$, and $\delta$ arises from the Dalitz plot and the BR asymmetry.

Hopefully, a more powerful bound will be obtained after combining the results of this analysis with with those from $B^{ \pm} \rightarrow D\left[\rightarrow K_{S} \pi^{+} \pi^{-}\right] K^{ \pm}$analysis.

## $\gamma$ from $B^{ \pm} \rightarrow D_{K_{s} 0_{\pi}-\pi^{+}} K^{ \pm}$

$D \rightarrow K_{5} \pi \pi$ Dalitz plot distribution in signal region



 rb

Used frequentist method to extract $\gamma, r_{B}, \delta_{B}$ from ( $x_{ \pm}, y_{ \pm}$)

$r_{B}<0.142\left(r_{B}<0.198\right)$
$1 \sigma \quad(2 \sigma)$
$\gamma=(92 \pm 41 \pm 10 \pm 13)^{\circ}$
(stat) $($ syst $)($ Dalitz $)$
(5dim confidence intervals projections)
hep-ex/0607104 hep-ex/0507101

## Summary

- Direct measurement of $\gamma$ is crucial to constrain new physics contributions in quark sector of the Standard Model.
- Many different approaches to measure $\gamma$. Information from GLW, ADS, GGSZ, and other methods are all useful.
- The GGSZ/Dalitz method has emerged as the most powerful technique.
- Precise parameterizations of the amplitudes and phases and the inclusion of information on branching ratio and decay-rate asymmetry improve sensitivity in $\gamma$. A lot of progress made in the analysis and technique development.
- Statistics are the only thing holding us back ! Adding additional D decay modes to $\mathrm{B} \rightarrow \mathrm{DK}$ and combining results from them will definitely help in the future analysis.


## End of Talk! Thank You !

## Back up slides

## ]

## Kaon/Pion Discrimination: DIRC

## LAYOUT



Cherenkov angle vs. momentum for pions and kaons
(a)

## Methods to Extract $\gamma$



- $\mathrm{D}^{0} / \bar{D}^{0}$ decay to common final state
- The interference depends on $\mathrm{V}_{\mathrm{ub}}$ and therefore on $\gamma$
- Critical parameter: ratio of amplitudes:

$$
r_{B} \equiv\left|\frac{A\left(B^{-} \rightarrow \bar{D}^{0} K^{-}\right)}{A\left(B^{-} \rightarrow D^{0} K^{-}\right)}\right| \sim 0.1
$$

- Select the $\mathrm{D}^{0}$ decays that enhance the interference:
O 3-body (e.g. $\left.\mathrm{K}_{\mathrm{S}} \pi \pi\right)$ : Dalitz
O CP-eigen. (e.g. $\mathrm{K}_{\mathrm{s}} \pi^{0}$ ): GLW
$0 \quad$ DCS (e.g. $D^{0} \rightarrow K^{+} \pi$ ): ADS
ү measurements are overwhelmingly dominated by statistical errors.


## Gronau-London-Wyler Method

$>B^{-} \rightarrow D^{0}{ }_{C P} K^{(*)}$-, where $D^{0}{ }_{C P}$ is a CP-eigenstate decay $\left(\mathrm{CP}+: D^{0} \rightarrow \pi^{+} \Pi^{-}, \mathrm{K}^{+} \mathrm{K}^{-} \quad \mathrm{CP}-: D^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \Pi^{0}\right)$
> We have the following observables:
$R_{C P \pm} \equiv \frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{2 \Gamma\left(B^{-} \rightarrow D^{0} K^{-}\right)}=1 \pm 2 r_{B} \cos \gamma \cos \delta_{B}+r_{B}^{2}$
Normalized to flavor state
$A_{C P_{ \pm}} \equiv \frac{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)-\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}{\Gamma\left(B^{-} \rightarrow D_{C P \pm}^{0} K^{-}\right)+\Gamma\left(B^{+} \rightarrow D_{C P \pm}^{0} K^{+}\right)}= \pm 2 r_{B} \sin \gamma \sin \delta_{B} / R_{C P \pm}$
$>4$ observables $\left(\mathrm{R}_{\mathrm{CP+}+}, \mathrm{R}_{\mathrm{CP}-}, \mathrm{A}_{\mathrm{CP}+}, \mathrm{A}_{\mathrm{CP}}\right) \Rightarrow$ determine 3 unknowns ( $\left.\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}, \gamma\right)$

$$
B F(B \rightarrow D K) \sim 10^{-4}, B F\left(D \rightarrow f_{C P}\right) \sim 10^{-2}
$$

Small... $\Rightarrow$ strongly statistics limited

## Gronau-London-W $_{\text {yler }}$ Method Results: BaBAR



## Atwood-Dunietz-Soni Method

$$
\left.\begin{array}{ll}
B^{- \text {favored }} \xrightarrow{0} K^{-} & D^{\text {suppressed }} \\
B^{0^{\text {suppressed }}} K^{+} \pi^{-} & \text {D decay into flave } \\
B^{-} \xrightarrow[D^{0}]{ } K^{-} & \bar{D}^{0} \xrightarrow{\text { favored }} K^{+} \pi^{-}
\end{array} K^{+} \pi^{-}\right]_{D} K^{-}
$$

## Count B candidates with opposite sign kaons

$$
\begin{array}{r}
R_{A D S}=\frac{\operatorname{Br}\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{+} \pi^{-}\right] K^{+}\right)}=r_{D}^{2}+r_{B}^{2}+2 r_{B} r_{D} \cos \left(\delta_{D}+\delta_{B}\right) \cos \gamma \\
A_{A D S}=\frac{B r\left(\left[K^{+} \pi^{-}\right] K^{-}\right)-\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{\operatorname{Br}\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+\operatorname{Br}\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}=2 r_{B} r_{D} \sin \left(\delta_{D}+\delta_{B}\right) \sin \gamma / R_{A D S} \\
\text { Input: } r_{D}=\frac{\left|A\left(D^{0} \rightarrow K^{+} \pi^{-}\right)\right|}{\left|A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)\right|}=0.060 \pm 0.003 \\
\text { D decay strong phase } \delta_{D} \text { unknown }
\end{array} \begin{aligned}
& \text { No significant } \\
& \text { signal in } \\
& \text { current dataset }
\end{aligned}
$$

## Dalitz Plot Method

- We saw that at least 2 D final states are needed in order to solve for all the unknowns.
- This 2-state requirement can be satisfied by a single multi-body D final states, in which each point in the final state phase space (Dalitz plot for a 3-body decay) serves effectively as a different final state.
- In terms of the $\gamma$ analysis, what differentiates 2 final states is their values of $r_{f}$ and/or $\delta_{f .}$. In this sense, different points in phase space can function as different $D$ final states when they have different values of $r_{f}$ or $\delta_{f}$.
- Broad resonances are the most obvious cause for variation of $r_{f}$ and $\delta_{f}$ in different points of final-state phase space.


## Assessment of Some 3-body D ${ }^{0}$ Decays

| Mode | $\mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \mathrm{f}\right)$ | $\lambda^{n}$ | $\left\|A\left(\overline{D^{0}}\right) / A\left(D^{0}\right)\right\|$ | Bgd | Comments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}$ | $2.9 \%$ | $\mathrm{n}=0$ | $\sim \lambda^{2}$ to 1 | OK | Attractive due to high stat \& low <br> background |
| $\pi^{+} \pi^{-} \pi^{0}$ | $1.5 \%$ | $\mathrm{n}=1$ | $\sim 1$ | $\pi^{0}$ | Expect similar sensitivity as $\mathrm{K}_{\mathrm{S}} \pi \pi$ <br> if background under control |
| $\mathrm{K}_{\mathrm{S}} \mathrm{K}^{+} \pi^{-}$ | $(0.34 \oplus 0.26) \%$ | $\mathrm{n}=1$ | $\sim 1$ | OK | Expect similar sensitivity as $\pi \pi \pi^{0}$ |
| $\mathrm{~K}^{+} \pi^{-} \pi^{0}$ | $\sim 0.2 \%$ | $\mathrm{n}=2$ | $\sim 1 / \lambda^{2}$ | $\pi^{0}$ | S/B probably too small for now |
| $\mathrm{K}^{+} \mathrm{K}^{-} \pi^{0}$ | $0.3 \%$ | $\mathrm{n}=1$ | $\sim 1$ | $\pi^{0}$ <br> bad, <br> KK <br> good | Low stat, but low background, so <br> sensitivity could approach $\pi \pi \pi^{0}$ |
| $\mathrm{~K}_{\mathrm{S}} \pi^{0} \pi^{0}$ | $\sim 1 \%(+?)$ | $\mathrm{n}=0$ | 1 | $2 \pi^{0}$ | CP eigenstate, low S/B |
| $\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-} \pi^{0}$ | $5.5 \%$ | $\mathrm{n}=0$ | $\sim \lambda^{2}$ | So-so | High stat, but 4-body analysis is <br> hard. Large phase space reduces <br> $\mathrm{D}^{0}$-D |

## Analysis with Multi-body $\mathrm{D}^{0}$ Final States

1. The simplest extension of the 2-body analysis.
2. Divide phase space into small bins, so that variations of $r_{f}$ and $\delta_{f}$ within each bin can be ignored. Distant bins will have values of $r_{f}$ and $\delta_{f}$ that are different enough so as to constitute different final states, and the analysis can be carried out, in principle, with as few as 2 bins.
3. A more accurate solution is not to ignore the variations of $r_{f}$ and $\delta_{f}$ over the bin. But this introduces a new unknown for each bin. We now have 3 unknowns $-r_{f}$, $\sin \delta_{f}$, and $\cos \delta_{f}$. The analysis then requires a minimum of 4 bins.
4. The only approach carried out so far is to parameterize the continuous variation of $r_{f}$ and $\delta_{f}$ over phase space by using a sum of interfering Breit-Wigner resonances.


## Step 1 Strong-phase Diff. \& Amplitude Ratio

- The strong_phase difference $\delta_{D}$ and relative amplitude $r_{D}$ between the decays of $D^{0}$ and $D^{0}$ to $\rho(770)^{+} \pi^{-}$state are defined, neglecting direct $C P$ violation in $D$ decays, by the equation:

$$
r_{D} e^{i \delta_{D}}=\frac{a_{D^{0} \rightarrow \rho^{-} \pi^{+}}}{a_{D^{0} \rightarrow \rho^{+} \pi^{-}}} e^{i\left(\delta_{\rho^{-} \pi^{+}}-\delta_{\rho+\pi^{-}}\right)}
$$

- We find


## BaBar

## Cleo

$$
\begin{array}{l|l}
r_{\mathrm{D}}=0.714 \pm 0.008(\text { stat }) \pm 0.003(\text { syst }) & r_{\mathrm{D}}=0.65 \pm 0.03(\text { stat }) \pm 0.04 \text { (syst) } \\
\delta_{\mathrm{D}}=-2.0^{\circ}(\text { stat }) \pm 0.6^{\circ} \pm 0.6^{\circ}(\text { syst }) & \delta_{\mathrm{D}}=-4^{\circ} \pm 3^{\circ}(\text { stat }) \pm 4^{\circ}(\text { syst }) \\
\hline
\end{array}
$$

Hep-ex / 0703037 (2007)
Hep-ex / 0306048 (2003)

These measurements are consistent with each other.

## Step 1 Introducing Angular Moments

Schrödinger's Equation

$$
-\frac{\hbar}{2 \mu} \nabla^{2} \Psi(\vec{r})+V(\vec{r}) \Psi(\vec{r})=E \Psi(\vec{r})
$$

$$
\left\{\begin{array}{l}
V(\vec{r})=0 \\
\vec{k}=\frac{\vec{p}}{\hbar}=\mu \frac{\vec{v}}{\hbar} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{array}\right.
$$

$$
|i\rangle=\Psi_{i}=\sum_{l=0}^{\infty} U_{l}(r) P_{l}(\cos \vartheta)
$$

$$
\Psi_{S}=\Psi_{f}-\Psi_{i}^{l=0}=\frac{1}{k} \sum_{l=0}^{\infty}(2 l+1) \frac{\eta_{l} e^{2 \imath \delta_{l}}-1}{2 \imath} P_{l}(\cos \vartheta) e^{\imath k r}
$$

Dynamic Amplitude (BW, Flatte, S-wave)
In case only I = 0 (S-wave) and 1 (P-wave) amplitudes are present :
$\left\{\begin{array}{l}\sqrt{4 \pi}\left\langle Y_{0}^{0}\right\rangle=S^{2}+P^{2} \\ \sqrt{4 \pi}\left\langle Y_{1}^{0}\right\rangle=2|S||P| \cos \phi_{S P} \\ \sqrt{4 \pi}\left\langle Y_{2}^{0}\right\rangle=\frac{2}{\sqrt{5}} P^{2}\end{array}\right.$
For S- and P- waves only, in the absence of cross-feeds from other channels, the amplitudes and the relative phase are given by:

We cannot solve these Eqs for the $\pi \pi$ system (due to crossfeeds) to extract $|S|,|P|$, and $\cos \phi_{S P}$ in a model independent way.

## BR \& Asymmetry for $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi^{-} \pi^{+} \pi^{0}} \mathrm{~K}^{ \pm}$

"Normalize" neural net variables q \& d $q \rightarrow q^{\prime}=\tanh ^{-1}\left[\left(q-1 / 2\left(q_{\max }+q_{\min }\right) / 1 / 2\left(q_{\max }-q_{\min }\right)\right]\right.$

Fit $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\pi \pi \pi 0} \mathrm{~K}^{-}$-sample with $\Delta \mathrm{E}, \mathrm{q}, \mathrm{d}$ Obtain signal yield \& asymmetry

| Nsig | $170 \pm 29$ |
| :--- | :--- |
| Asym | $-0.02 \pm 0.15$ |

$\Delta$ E PDFs are Gaussian and $2^{\text {nd }}$-order polynomial:



$$
\begin{aligned}
& \mathrm{BR}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}_{\text {ллл兀0 }} \mathrm{K}^{-}\right)= \\
& (4.6 \pm 0.8 \pm 0.7) \times 10^{-6} \\
& \mathrm{~A}\left(\mathrm{~B}^{-} \rightarrow \mathrm{D}_{\text {ллл0 }} \mathrm{K}^{-}\right)= \\
& -0.02 \pm 0.15 \pm 0.03
\end{aligned}
$$

## Step 2 BR of $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi^{-\pi^{+} \pi^{0}}} \mathrm{~K}^{ \pm}$: Fit Projections





| Nsig | $170 \pm 29$ |
| :--- | :--- |
| Asym | $-0.02 \pm 0.15$ |
| $N_{B B}$ fake D | $1138 \pm 76$ |
| $\mathrm{~N}_{\text {qq fake } \mathrm{D}}$ | $2383 \pm 71$ |
| $\mathrm{~N}_{\mathrm{D} \pi}$ | $57 \pm 20$ |
| $\mathrm{~N}_{\mathrm{D} \pi \mathrm{X}} / \mathrm{N}_{\mathrm{BB}}$ | $0.53 \pm 0.15$ |$\quad \mathrm{BR}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}_{\pi \pi \pi 0} \mathrm{~K}^{-}\right)=(4.6 \pm 0.8 \pm 0.7) \times 10^{-6}$

## Step 3 <br> $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\pi^{-} \pi^{+} \pi^{0}} \mathrm{~K}^{ \pm}$: Bkg Dalitz Shapes

- Fake-D background Dalitz shapes are NR + 3 incoherent, unpolarized $\rho$ 's:
- Shape for 2 event types can't be fit to this way. We use an empirical shape from simulation:


- Fit $\mathrm{D}^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ Dalitz plot from $\mathrm{B}^{-} \rightarrow \mathrm{D}_{\pi \pi \pi 0^{\prime}} \mathrm{K}^{-}$sample with $\Delta \mathrm{E}, \mathrm{q}, \mathrm{s}^{+}, \mathrm{s}^{-}$

For CP Fit - NN variable d not used - highly correlated with $\mathrm{s}^{+}$, $\mathrm{s}^{-}$

- $m_{E S}$ and $M_{D}$ not used - correlated with other variables for the background


## Step 3 CP Parameters: Max Likelihood Fit

- To make use of both the shape and the absolute decay rates, we minimize the function


$$
\mathrm{N}^{ \pm} \text {expected }=\left.\eta \int \mathrm{A}^{ \pm}\left(\mathrm{s}^{+}, \mathrm{s}^{-}\right)\right|^{2} \varepsilon\left(\mathrm{~s}^{+}, \mathrm{s}^{-}\right) /\left.\int \mathrm{f}_{\mathrm{D}}\left(\mathrm{~s}^{+}, \mathrm{s}^{-}\right)\right|^{2} \varepsilon\left(\mathrm{~s}^{+}, \mathrm{s}^{-}\right)
$$

$1 / 2 \mathrm{~N}_{\mathrm{BB}} \varepsilon \mathrm{BR}\left(\mathrm{D}^{0} \rightarrow \pi \pi \pi^{0}\right) \mathrm{BR}\left(\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}\right)$

Step 3 Behavior of $L_{D P} \& L_{B A}$ for $x_{\text {true }}=y_{\text {true }}=0$

$$
\mathrm{r}_{\mathrm{B}} \mathrm{e}^{\mathrm{i}(\delta \pm \gamma)}=\mathrm{x}_{ \pm}+\mathrm{y}_{ \pm}
$$

Toy exp., S+B


- $\mathrm{L}_{\mathrm{DP}}\left(\mathrm{L}_{\mathrm{BA}}\right)$ has Cartesian (polar) symmetry
- $\mathrm{L}_{\mathrm{BA}}$ is more sensitive (denser contour lines) in radial direction ( $\rho$ ), not sensitive at all in $\theta$



## Step 3 From $\left(\rho_{ \pm}, \theta_{ \pm}\right)$to $\left(r_{B}, \delta, \gamma\right)$

Use frequentist method to extract $\gamma, r_{B}, \delta_{B}$ from ( $\rho_{ \pm}, \theta_{ \pm}$)
(3dim confidence intervals projections)







## Step 3 Systematics details

- Dalitz Model:

| Dalitz model | $\rho_{-}$ | $\theta_{-}$ | $\rho_{+}$ | $\theta_{+}$ |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{NR}_{S}, \rho(770)$ | 0.0633 | 17.70 | 0.0359 | -7.30 |
| $+f_{0}(980)$ | 0.0583 | 22.86 | 0.0260 | 4.63 |
| $+\rho(1450)$ | 0.0010 | 7.20 | -0.0138 | -8.50 |
| $+\rho(1700)$ | 0.0248 | 4.12 | 0.0043 | -10.46 |
| $+f_{0}(1370,1500,1710), f_{2}(1270)$ | -0.0249 | -11.89 | -0.0287 | -1.67 |
| $+\sigma$ | 0 | 0 | 0 | 0 |
| $+\mathrm{NR}_{P}$ | 0.0106 | -0.23 | 0.0086 | -1.46 |
| $+\omega, f_{2}^{\prime}(1525)$ | 0.0091 | 2.66 | 0.0077 | -2.07 |
| $R=0$ | 0.0017 | -8.56 | 0.0005 | -0.09 |


| Source | BF error (\%) | Section |
| :--- | :---: | ---: |
| PID efficiency | 3.1 | 13.12 |
| $\pi^{0}$ efficiency | 3.0 | 13.16 |
| Tracking efficiency | 1.5 | 13.17 |
| $B$ counting | 1.1 | 13.18 |
| Total | 4.70 |  |

- CP systematics

| Source | $\rho_{-}$ | $\theta_{-}$ | $\rho_{+}$ | $\theta_{+}$ | Section |
| :--- | ---: | ---: | ---: | ---: | ---: |
| $\mathcal{B}\left(B^{-} \rightarrow D^{0} K^{-}\right)$ | 0.0288 | 1.56 | 0.0277 | 1.05 | 13.19 |
| $\mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}\right)$ | 0.0174 | 0.88 | 0.0167 | 0.66 | 13.19 |
| $\frac{B\left(D^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}{B\left(D^{0} \rightarrow K-\pi^{+} \pi^{0}\right)}$ | 0.0058 | 0.01 | 0.0056 | 0.01 | 13.19 |
| Signal efficiency | 0.0148 | 0.02 | 0.0141 | 0.03 | 13.19 |
| $N_{B \bar{B}}$ | 0.0049 | 0.01 | 0.0046 | 0.01 | 13.19 |
| Total | 0.0375 | 1.79 | 0.0360 | 1.24 |  |

## $\gamma$ : Key Analysis Technique

Exploit kinematics of $e^{+} e^{-} \rightarrow Y(4 S) \rightarrow B \bar{B}$ for signal selection
$m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-p_{B}^{* 2}}$


$\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}$



Event topology



## $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{5}{ }^{0} \pi^{+} \pi^{-}$Dalitz Plot analysis

Motivation: CKM angle $\gamma$ using $\mathbf{B} \rightarrow \mathrm{D}\left[\mathrm{K}_{\mathbf{s}}{ }^{0} \pi^{+} \pi^{-}\right] \mathrm{K}^{-}$decay





## $\mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}}{ }^{0} \pi^{+} \pi^{-}$(Isobar Model)

| Component | $\operatorname{Re}\left\{a_{r} e^{i \phi_{r}}\right\}$ | $\operatorname{Im}\left\{a_{r} e^{i \phi_{r}}\right\}$ | Fit fraction (\%) | $\begin{aligned} & \text { K*(892)- : } 58 \% \\ & \rho(770)^{0}: 22 \% \\ & \text { Non-Res. }: 8 \% \\ & \sigma(500): 8 \% \\ & \text { K*(1430) }: 7 \% \\ & \text { for }_{0}(980): 6 \% \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $K^{*}(892)^{-}$ | $-1.223 \pm 0.011$ | $1.3461 \pm 0.0096$ | 58.1 |  |
| $K_{0}^{*}(1430)^{-}$ | $-1.698 \pm 0.022$ | $-0.576 \pm 0.024$ | 6.7 |  |
| $K_{2}^{*}(1430)^{-}$ | $-0.834 \pm 0.021$ | $0.931 \pm 0.022$ | 3.6 |  |
| $K^{*}(1410)^{-}$ | $-0.248 \pm 0.038$ | $-0.108 \pm 0.031$ | 0.1 |  |
| $K^{*}(1680)^{-}$ | $-1.285 \pm 0.014$ | $0.205 \pm 0.013$ | 0.6 |  |
| $K^{*}(892)^{+}$DCS | $0.0997 \pm 0.0036$ | $-0.1271 \pm 0.0034$ | 0.5 | Important for $\gamma$ <br> and D-mixing measurements |
| $K_{0}^{*}(1430)^{+}{ }_{\text {dcs }}$ | $-0.027 \pm 0.016$ | $-0.076 \pm 0.017$ | 0.0 ¢ |  |
| $K_{2}^{*}(1430){ }^{+}{ }_{\text {dCS }}$ | $0.019 \pm 0.017$ | $0.177 \pm 0.018$ | 0.1 |  |
| $\rho(770)$ | 1 | 0 | 21.6 |  |
| $\omega(782)$ | $-0.02194 \pm 0.00099$ | $0.03942 \pm 0.00066$ | 0.7 |  |
| $f_{2}(1270)$ | $-0.699 \pm 0.018$ | $0.387 \pm 0.018$ | 2.1 |  |
| $\rho(1450)$ | $0.253 \pm 0.038$ | $0.036 \pm 0.055$ | 0.1 |  |
| Non-resonant | $-0.99 \pm 0.19$ | $3.82 \pm 0.13$ | 8.5 |  |
| $f_{0}(980)$ | $0.4465 \pm 0.0057$ | $0.2572 \pm 0.0081$ | 6.4 |  |
| $f_{0}(1370)$ | $0.95 \pm 0.11$ | $-1.619 \pm 0.011$ | 2.0 |  |
| $\sigma(490,406)$ | $1.28 \pm 0.02$ | $0.273 \pm 0.024$ | 7.6 | hep-ex/0607104 |
| $\sigma^{\prime}(1024,89)$ | $0.290 \pm 0.010$ | $-0.0655 \pm 0.0098$ | 0.9 |  |

## The 'Cartesian coordinates'

- Goal: Fit the Dalitz plot distributions of $D^{0} \rightarrow K_{S} \pi \pi$ from $B^{-}$ and $\mathrm{B}^{+}$decays to extract $\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}$ and $\gamma$
- Complication: The Maximum Likelihood fit overestimates $r_{B}$ and underestimates the error of $\gamma$
- Solution: Write the Likelihood as a function of the cartesian coordinates $\mathrm{X}_{ \pm}, \mathrm{y}_{ \pm}: \quad x_{\mp}=r_{B} \cos \left(\delta_{B} \mp \gamma\right)$

$$
y_{\mp}=r_{B} \sin \left(\delta_{B} \mp \gamma\right)
$$

$$
\Gamma\left(B^{+}\right) \propto\left|f_{+}\right|^{2}+\left(x_{+}^{2}+y_{+}^{2}\right)\left|f_{-}\right|^{2}+2 x_{+} \operatorname{Re}\left(f_{+} f_{-}^{*}\right)+2 y_{+} \operatorname{Im}\left(f_{+} f_{-}^{*}\right)
$$

$$
\Gamma\left(B^{-}\right) \propto\left|f_{-}\right|^{2}+\left(x_{-}^{2}+y_{-}^{2}\right)\left|f_{+}\right|^{2}+2 x_{-} \operatorname{Re}\left(f_{-} f_{+}^{*}\right)+2 y_{-} \operatorname{Im}\left(f_{-} f_{+}^{*}\right)
$$

$$
f_{\mp} \equiv A_{D}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)
$$

Likelihood is Gaussian and unbiased in $x_{ \pm}, y_{ \pm}$

- Strategy: Extract $x_{ \pm}, y_{ \pm}$from ML fit to the $D^{0} \rightarrow K_{S} \pi \pi$ Dalitz plot and derive $r_{B}, \delta_{B}$ and $\gamma$ from $X_{ \pm}, y_{ \pm}$with stat. procedure


## Sensitivity to $\gamma$ over Dalitz plot

- Sensitivity varies strongly over Dalitz plane
- 2nd derivative of the $\log (\mathrm{L})$ event-by-event weighs the event


$$
\begin{aligned}
& \sigma^{2}(\gamma) \sim \frac{1}{\frac{d^{2} \ln (L)}{d \gamma^{2}}} \\
& \text { weight }=\frac{d^{2} \ln (L)}{d \gamma^{2}} \\
& \text { events: points (weight }=1 \text { ) }
\end{aligned}
$$

Interference of $B^{-} \rightarrow D^{0}\left[\rightarrow K_{S}^{0} \rho^{0}\right] K^{-}$
with $B^{-} \rightarrow \bar{D}^{0}\left[\rightarrow K_{s}^{0} \rho^{0}\right] K^{-}$
$\equiv$ GLW like

Interference of $B^{-} \rightarrow D^{0}\left[\rightarrow K^{* *} \pi^{-}\right] K^{-}$
(suppressed) with $B^{-} \rightarrow \bar{D}^{0}\left[\rightarrow K^{*+} \pi^{-}\right] K^{-}$ $\equiv$ ADS like

## $\gamma$ from $\mathrm{B}^{ \pm} \rightarrow \mathrm{D}_{\mathrm{Ks}_{s} \pi^{-} \pi^{+}} \mathrm{K}^{ \pm}$, role of $\mathrm{r}_{\mathrm{B}}$



BaBar: $\gamma=(92 \pm 41 \pm 10 \pm 13)^{\circ}$
Belle: $\quad \gamma=\left(53_{-18}^{+15} \pm 3 \pm 9\right)^{\circ}$
[D*K included]
better precision of $\operatorname{BaBar}(\mathrm{x}, \mathrm{y})$ does NOT translate to a smaller error on $\gamma$. Why?
the error of $\gamma$ is $\sim$ proportional to the uncertainty in $(x, y)$ and inversely proportianal to the distance from $(0,0)$.

Belle measurement is consistent with larger $r_{B}$.

## Development of New Identification Selectors for $K, \pi$, $P$, and $e$

- to replace kaon neural net, used in B-tagging

1. "BDT Kaon" Selectors:
2. "KM"

Selectors:

- separate $\mathrm{K}, \boldsymbol{\pi}, \mathrm{p}, \mathrm{e}$ from one another
- use multi-class learning
- will provide particle identification at 6 levels of strictness: Extra Loose, ..., Extra Tight


## Why New Selectors ?

- For B-tagging, need new Kaon selector to replace the old selectors.
- The kaon neural net hasn't been trained since circa 2001; there have been many changes in detector performance since then (e.g., new dE/dx calibration).
- Trained on MC, but are used to evaluate performance in real data.
- Give degraded performance for high-momentum tracks.
- For kaons, protons and pions, there is only one selector of choice for analysis: Likelihood-based. There is room for improvement.
- For electron, the only available selector is likelihood-based.
- Some analyses (notably Leptonic) will benefit enormously from highperformance selectors for both low and high momentum tracks.
- Improvement in performance needed for crucial BaBar analyses looking for New Physics, rare decays, CP violation ....


## What is New in the New Selectors?

- Training on "real data"
- Include new corrections for dE/dx.
- Employ powerful statistical tools to separate signal and background, use bagging on weak classifier and multiclass training.
- For each class of particle hypothesis: "kaon", "pion", "proton", and "electron", the other three classes are treated as background for classifier training. Apart from "muon", no additional vetoes.
- Include many additional useful input variables, including $P$ and $\theta$ after flattening the two-dimensional P: $\theta$ distribution. No need for separate trainings in $P, \theta$ bins.


## Software Implementation: StatPatternRecognition



For details on the algorithms: arXiv:physics/0507143 (by Ilya Narsky, CalTech)

- Decision Tree splits nodes recursively until a stopping criteria is satisfied.
- Bagger decision tree divides the training data sample into a number of bootstrap replicas, and trains on each one of them separately.
- The final classification is done by majority vote.


## Performance of BDT Kaon Selectors



Includes all momentum and $\theta$ ranges and all tracks.

## BDT Kaon Performance in Mom. Bins



Caveat: I have changed the definition of the Y -axis variable.

The higher curve/ point represents better performance



## BDT Kaon Performance by Track Quality





Conclusion: Improvement in performance everywhere.

## Performance of KM Selectors



## Performance of Kaon Selector



LH Loose:
Efficiency $=0.87$
Pi Rej. $=0.96$

LH VeryTight:
Efficiency $=0.82$
Pi Rej. $=0.98$

Caveat: These numbers are approximations!

## Performance for Pion, Proton \& Electron



Looks great!.... But need to see performance in entire P, $\theta$ spectrum before declaring victory!




[^0]:    While measuring $\gamma$, one encounters two devils: statistics and ambiguity, and they often feed each other.

